
PANM 12

Martin Lazar
Parallel implementation of an algorithm of the first-order projection method for solving viscous
incompressible fluid flow

In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics,
Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute of Mathematics AS CR, Prague, 2004.
pp. 143–148.

Persistent URL: http://dml.cz/dmlcz/702787

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702787
http://dml.cz

PARALLEL IMPLEMENTATION OF AN ALGORITHM
OF THE FIRST-ORDER PROJECTION METHOD FOR
SOLVING VISCOUS INCOMPRESSIBLE FLUID FLOW ∗

Martin Lazar

Abstract

This paper concerns a parallel algorithm of the first-order projection method for
solving the Navier-Stokes equations. We describe the process of parallelization and
a particular implementation of the algorithm on a computational cluster. Finally, we
compare used iterative methods and discuss the obtained parallel efficiency.

1. Problem formulation

The flow of a viscous incompressible fluid is described by the Navier-Stokes equa-
tions

∂tu− ν∆u + (u · ∇)u +∇p = f (1)

and the equation of continuity

∇ · u = 0, (2)

where u = u(x, t) is the velocity, ν = const. is the viscosity, p = p(x, t) is the
pressure, and f = f(x, t) is a given function.

We add initial and boundary conditions

u|x∈∂Ω = 0,
u|t=0 = u0.

(3)

We are looking for functions u and p that satisfy the above equations in some
appropriate sense.

2. Numerical method

The numerical method we use proceeds in two phases. First, we carry out
time-discretization using the projection method. Then we apply the finite-difference
method in space at each time level to get the approximate values of the solution at
the mesh points.

∗This research has been partially supported by the Grant Agency of the Czech Republic under
grant No. 201/04/1503.

143

2.1. Time discretization: the first-order projection method

The projection method discretizes Eqs. (1) and (2) in time. A key feature of
the projection method is decoupling the computation of velocity and pressure. The
transition to the time level tn+1 is described by the following procedure (see [2], [3]
for details):

1. calculation of an auxiliary velocity û at tn+1 (evolution step):

ûn+1 = un + τ [ν∆un + fn − (un ·∆)un], (4)

where τ = tn+1 − tn;

2. calculation of the pressure p at tn+1 by solving the Neumann problem for the
Poisson equation:

τ∆pn+1 = ∇ · ûn+1,

τ ∂pn+1

∂n
= ûn+1 · n, x ∈ ∂Ω;

(5)

3. calculation of the new velocity u at tn+1 (projection step):

un+1 = ûn+1 − τ∇pn+1,
un+1 = 0, x ∈ ∂Ω.

(6)

2.2. Space discretization: finite-difference method

The Neumann problem (5) is solved by the finite-difference method. We choose
a grid covering the domain Ω and denote

Û i ≈ û(xi, tn+1),
Pi ≈ p(xi, tn+1).

Then, after replacing the derivatives in the PDE by the respective differential quo-
tients we get (in R2) the grid equations

2(
k

h
+

h

k
)Pm − k

h
Pw − k

h
Pe − h

k
Pn − h

k
Ps =

hk

τ
(DxV̂m + DyŴm), (7)

where h, k are space steps and w, e, n, s denote the points west, east, north, and
south from the central point denoted by m, Û i = [V̂i, Ŵi]

T , DxV̂m = 1
2h

(V̂e − V̂w),

and DyŴm = 1
2k

(Ŵn−Ŵs). This equation has to be modified in the boundary nodes
according to the Neumann boundary condition.

If we put

P = [P1, P2, · · ·]T ,

F = [· · · , hk

τ
(DxV̂m + DyŴm), · · ·]T ,

144

A =

D E
E D E

E D E
.

E D

,

where F is the right-hand side vector from (7), D is the tridiagonal matrix which
has 2(h

k
+ k

h
) on the diagonal and − k

h
off the diagonal, and E is a diagonal matrix

with −h
k

on the diagonal, we can see that the second step of our procedure (solution
of the Poisson equation) yields the system of grid equations AP = F. This system is
singular, its null space being constant functions. We solve it by an iterative method
with preconditioning. The null space is removed from the resulting vector whenever
the preconditioner is applied, see [1].

3. Parallel algorithm

The aim of parallelization is to speed up the computation using more computa-
tional units (processors) connected together through a computer network (computa-
tional cluster). The parallelization of our algorithm has been made by the domain
decomposition method.

The domain Ω is divided into subdomains approximately of the same size in
such a way that each subdomain is assigned to one processor. The computation of
auxiliary velocity û in the first step of the projection method (evolution step) can
be performed by all the processors simultaneously. Each processor computes only
the values in the nodes belonging to its own subdomain. To compute the derivatives
on the boundary of a subdomain it is necessary that each processor stored also the
values of velocity in the boundary nodes of the subdomains of the neighbouring
processors (see Fig. 1).

Fig. 1: Division of Ω into the subdomains. The grid points needed for the computation of
derivatives in Ω4 are marked in gray.

The computation of the new velocity u in the third step of the projection method
(projection step) is similar to the computation of û.

145

The system of grid equations AP = F from the discretization of the Poisson
equation in the second step of the projection method can be solved by an arbitrary
method for solving linear systems. Because of sparsity of the matrix A, it is useful
to use a parallel iterative method with preconditioning. An overview of tested meth-
ods is shown in Table 1. For details about the tested methods and their parallel
implementation see [6].

GMRES Generalized Minimum Residual (with restart after 30 iterations)
CGS Conjugate Gradient Squared
BiCGStab Bi-Conjugate Gradient Squared Stabilized
TFQMR Transpose Free Quasi Minimal Residual
SYMMLQ Symmetric LQ method
BJacobi Block Jacobi preconditioning (from left)
ASM Additive Schwarz Method preconditioning (from left)

Tab. 1: Tested iterative methods (above) and preconditioners (below).

4. Numerical results

The program was written in programming language C using the Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc, see [1]). All tests were done
on cluster Lyra at the Department of Mathematic of Faculty of Applied Sciences
at University of West Bohemia in Pilsen. This cluster consists of six1 SMP nodes
having two Pentium III 450 MHz processors connected together through Myrinet
network. The relative tolerance for the iterative solvers was 10−5 for all the tests.

CPUs GMRES BiCGS CGS TFQMR SYMMQR
+BJacobi +BJacobi (no precond.) (no precond.) + ASM

1 193.6 176.6 212.3 196.3 150.3
2 107.5 93.4 115.6 106.2 86.3
3 86.6 69.4 78.1 72.7 64.6
4 53.9 46.1 57.0 50.6 39.5
5 50.9 36.6 41.6 41.3 36.8
6 39.0 31.4 37.9 35.0 26.9
7 34.7 26.9 34.7 29.9 25.7
8 31.1 23.7 33.1 28.3 20.4

Tab. 2: Computation time in seconds for computing 100 time layers on grid of
100×100 nodes.

1At testing time, two nodes were out of function, so all tests was done only on four nodes.

146

1 2 3 4 5 6 7 8
Number of processors

0

50

100

150

200

C
om

pu
ta

tio
n

tim
e

(i
n

se
c.

)

GMRES+BJacobi
BiCGS+BJacobi
CGS
TFQMR
SYMMLQ+ASM

Fig. 2: Computation time for computing 100 time layers on grid of 100×100 nodes.

The results of the speed tests are in Table 2 and Fig. 2. We observed that:

• CGS with both preconditioners broke down in 40% of the tests approximately,
SYMMLQ with ASM broke down in majority of the tests. Other combinations
of iterative solvers and preconditioners did not break down.

• ASM and BJacobi were very similar regarding the number of iterations and
the computational time.

• GMRES without preconditioning was approximately 2.6 times slower then
with BJacobi or ASM preconditioner. SYMMQR was approximately 1.8 times
slower and BiCGS was 1.3 times slower then with a preconditioner. TFQMR
and CGS without preconditioner were not slower then the variant with a pre-
conditioner.

• Parallel speedup (ratio of the computing time of the serial and the parallel
algorithm) is very close to the ideal speedup, see Fig. 3.

5. Conclusion

Our parallel efficiency (ratio of the parallel speedup and the number of the proces-
sors used) is very close to one. We can compare it with the result from [4] where
parallel direct solvers were tested on the Lyra cluster. There, the parallel efficiency
was about 1

3
. We can see that the projection method on the structured grid with an

iterative solver is a very well parallelizable task.

147

1 2 3 4 5 6 7 8
Number of processors

1

2

3

4

5

6

7

8

Pa
ra

lle
l s

pe
ed

up

Fig. 3: Speedup (ratio of the computing time of serial and parallel algorithm).

References

[1] S. Balay et al.: PETSc users manual. Technical Report ANL-95/11 – Revision
2.2.0, Argonne National Laboratory, 2004.

[2] M. Brandner: Numerical modeling of dynamics of unblended viscous incompress-
ible fluid. PhD thesis. University of West Bohemia, Pilsen, 2000. (In Czech.)

[3] E. Weinan, J.-G. Liu: Projection method I: Convergence and numerical boundary
layers. SIAM J. Numer. Anal. 32, 1995.

[4] M. Lazar: Linear algebra libraries for massive parallel computing. Diploma the-
sis. University of West Bohemia, Pilsen, 2001. (In Czech.)

[5] S. Mı́ka, P. Přikryl: Numerical methods for solving partial differential equations.
University of West Bohemia, Pilsen, 1995. (In Czech.)

[6] Y. Saad: Iterative methods for sparse linear systems, 2nd edition. SIAM,
Philadelphia, 2003.

148

