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NONLINEAR OPTIMIZATION PROBLEM

Ctirad Matonoha

1. Introduction

In this contribution, we are concerned with a general nonlinear optimization
problem [7]: find a local minimum x? ∈ Rn of function f : Rn → R, f ∈ C2 :

x? = arg min
x∈Rn

f(x). (1)

The main optimization method for solving this problem has an iterative character.
After choosing initial point x0 we construct a sequence of points {xk}k∈N0 , so that

xk+1 = xk + αkdk, (2)

where dk is a direction vector and αk is a steplength. A global convergence is an im-
portant assumption for the application of optimization methods. It means satisfying
the condition

lim inf
k→∞

gk = 0, (3)

where gk ≡ g(xk) = ∇f(xk).

2. Trust region methods

Trust region methods [1], [8] belong to the most effective optimization methods
because of their very good convergence properties. They are globally and super-
linearly convergent [3], [4] and moreover they use a simple choice of the steplength.
Before the definition of trust region methods we’ll introduce the following notation:

ψk(d) =
1

2
dT Bkd + gT

k d

for a quadratic function that locally approximates the difference f(xk + d)− f(xk),

wk(x) =
Bkd + gk

‖gk‖
for a vector used in the determination of the accuracy of a direction vector, and

%k(x) =
f(xk + d)− f(xk)

ψk(d)

for a quotient of an actual and predicted reduction in function f . Matrix Bk is either
the Hessian matrix Gk ≡ G(xk) = ∇2

xxf(xk) or its suitable approximation, and the
norm is Euclidean.
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Definition 1 Optimization method (2) is a trust region method if direction vectors
dk ∈ Rn, k ∈ N0, are chosen so that

‖dk‖ ≤ ∆k, (4)

‖dk‖ < ∆k ⇒ ‖wk(dk)‖ = ωk ≤ ω, (5)

ψk(dk) ≤ −σ ‖gk‖min

{
‖dk‖, ‖gk‖

‖Bk‖
}

, (6)

where ω < 1, 0 < σ < 1. Steplengths αk ≥ 0, k ∈ N0, are chosen so that

%k(dk) ≤ 0 ⇒ αk = 0, (7)

%k(dk) > 0 ⇒ αk = 1. (8)

Sequence ∆k > 0, k ∈ N0, is constructed so that

%k(dk) < % ⇒ β ‖dk‖ ≤ ∆k+1 ≤ β ‖dk‖, (9)

%k(dk) ≥ % ⇒ ∆k ≤ ∆k+1 ≤ γ ∆k, (10)

where 0 < % < 1, 0 < β ≤ β < 1 < γ. Matrices Bk, k ∈ N0, are constructed so that
they satisfy the condition

‖Bk‖ ≤ M ∀k ∈ N0, (11)

where constant M < ∞ is independent of k ∈ N0.

The algorithm can be written in the following way.

Algorithm 1 Trust region method.

Choose x0 ∈ Rn, 0 6= B0 ∈ Rn×n
S , ∆0 > 0, ε > 0, compute f(x0), set k = 0.

1. Compute gradient g(xk). If ‖g(xk)‖ < ε, then STOP.

2. Determine vector dk satisfying conditions (4)-(6).

3. Set x+
k = xk + dk and compute values f(x+

k ) and %k(dk) =
f(x+

k )− f(xk)

ψk(dk)
.

4. If %k(dk) < %, update ∆k+1 according to (9).
If %k(dk) ≥ %, update ∆k+1 according to (10).

5. If %k(dk) ≤ 0, go to step 2.
If %k(dk) > 0, update matrix Bk+1 6= 0 so that it satisfies condition (11), set
xk+1 = x+

k , f(xk+1) = f(x+
k ), k := k + 1 and return to step 1.
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Trust region methods lead to a subproblem of finding minimum dk of quadratic
function ψk(d) subject to constraint ‖d‖ ≤ ∆k. As this subproblem is solved itera-
tively for fixed k, this index can be omited. If d? is a resulting direction vector in
step k, the subproblem is as follows:

d? = arg min ψ(d) ≡ 1

2
dT Bd + gT d, ‖d‖ ≤ ∆. (12)

Trust region methods are a class of methods that must satisfy conditions of Defini-
tion 1. The first class seeks an optimal step on the whole space Rn. As computing
such a vector is a difficult task, there exists the second class of methods that seeks
only an approximation of the optimal step on some subspaces (e.g. Krylov subspaces)
of Rn. Conditions (4)-(6) are the only ones that computed optimal or approximated
solution d? must satisfy.

3. Direction determination

1. Use of a Cholesky decomposition and Newton’s method
We exploit optimality conditions [2] that characterize the optimal step d? :

‖d?‖ ≤ ∆, B + ξ?I º 0, ξ? ≥ 0, (B + ξ?I)d? = −g, (‖d?‖−∆) ξ? = 0 (13)

and after denoting by λ1 the smallest eigenvalue of B we solve the equation

φ(ξ) ≡ 1

∆
− 1

‖d‖ = 0, ξ > max{0,−λ1}

for ξ? by Newton’s method and factorization B + ξI = RT R.

2. Use of a linear combination of eigenvectors
Let B = QDQT be the eigendecomposition of B, Q = (q1, . . . , qn). Then

d? =
n∑

i=1

ciqi,

where c = (c1, . . . , cn)T is a certain vector such that d? satisfies optimality
conditions (13).

3. The dogleg method
d? ∈ sp{g,B−1g}

A simple piecewise linear curve is generated, where Cauchy and Newton points

dC = − gT g

gT Bg
g and dN = −B−1g are considered.

4. Combination of the dogleg method and a Cholesky decomposition

d? = τ1g + τ2B
−1g

Vector τ? = (τ1, τ2)
T is the optimal step on subspace R2. As this is a simple

problem, a Cholesky decomposition and Newton’s method approaches are used.
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5. Use of the conjugate gradient method

d? ∈ Ki+1 = sp{g,Bg,B2g, . . . , Big}

Vector d? is a linear combination of B-orthogonal basis of Krylov subspaceKi+1.
A piecewise linear curve, whose final points are conjugate gradient iterations, is
generated. Sequence {‖dj‖}j=0,1,...,i is monotonically increasing while sequence
{ψ(dj)}j=0,1,...,i is monotonically decreasing.

6. The preconditioned conjugate gradient method
For large scale sparse systems there is suitable to use preconditioning of CGM
with a symmetric and positive definite matrix C. We perform an incomplete
decomposition B ≈ RT R, where R has the same nonzero elements structure as
matrix B, and set C = RT R.

7. Combination of the conjugate gradient and dogleg methods
As the dogleg method uses just one step of conjugate gradient method, we can
generalize this process with using more steps of CGM.

8. Use of the Lanczos method
Vector d? ∈ Ki+1 is a linear combination of orthonormal basis, d? = Qihi,
where QT

i BQi = Ti is a matrix form of the Lanczos method. Such an approach
leads to subproblem

hi = arg min ψ̃(h) ≡ 1

2
hT Tih + g̃T h, ‖h‖ ≤ ∆, (14)

where g̃ = (‖g‖, 0, . . . , 0)T , that is solved by a Cholesky decomposition and
Newton’s method. It is a simple problem because matrix Ti is tridiagonal. Thus
a sequence of approximations of the optimal step is generated. Unfortunately
we cannot use preconditioning because we would loose the orthogonality of the
original basis vectors and change a constraint of quadratic subproblem (12).

9. Two new modifications of the Lanczos method

(a) Combined “Lanczos – conjugate gradient” method
We choose fixed m (usually small) and compute m steps of the Lanc-
zos method to obtain tridiagonal matrix Tm−1 of order m. Now we solve
tridiagonal quadratic subproblem (14) for hm−1 ∈ Rm with a Cholesky
decomposition of matrix Tm−1 + ξIm to obtain parameter ξ? > 0. Such
a value is sufficient in computing an approximate solution of original sub-
problem (12). Finally, equation (B + ξ?I)d + g = 0 is solved by the
(preconditioned) conjugate gradient method. We’ll get a better approxi-
mation of the trust region step than in case ξ? = 0.
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(b) Combined “conjugate gradient – Lanczos” method
We choose a fixed m (usually small) and compute m steps of the conjugate
gradient method to generate Lanczos vectors. Tridiagonal matrix Tm−1

of order m is obtained and now we proceed as follows. If ‖dm‖ < ∆,
we continue with the conjugate gradient method till end because matrix
Tm−1 is no longer updated. If ‖dm‖ ≥ ∆, we solve tridiagonal quadratic
subproblem (14) for hm−1 ∈ Rm with a Cholesky decomposition of matrix
Tm−1+ξIm and set d? = Qm−1hm−1. However, with this method we cannot
use preconditioning for the same reasons as above.

10. Parametric eigenvalue problem
We exploit optimality conditions (13) that characterize optimal step d?, define
parametr τ ∈ R, construct matrix

Aτ =

(
τ gT

g B

)
∈ R(n+1)×(n+1)

and observe that
τ

2
+ ψ(d) =

1

2
(1, dT ) Aτ (1, dT )T .

Therefore, we can rewrite subproblem (12) as

min
y∈Rn+1

1

2
yT Aτy, yT y ≤ 1 + ∆2, eT

1 y = 1, where e1 = (1, 0, . . . , 0)T .

This formulation suggests that we can find the desired solution in terms of an
eigenpair of Aτ . The main goal is to drive parameter τ to an optimal value τ?,
so that the eigenvector associated with the smallest eigenvalue of Aτ? has the
form y = (1, d?)

T , where d? is the optimal step for subproblem (12).

4. Numerical experiments

Algorithms were implemented in UFO [5] and tested on two collections of large
scale structured testing problems with 22 optimization problems without const-
raints [6] for 1000 and 5000 unknowns. The results are presented in Tables 1-2,
where:

• N – number of the method used

• Method – initials of the method used

• P – type of preconditioning: 0, 1, 2 (see below)

• NIT – total number of leading iterations (xk in algorithm 1)

• NFV – total number of evaluations of function f

• NFG – total number of evaluations of gradient g = ∇f

• NCG – total number of CGM iterations (inner iterations for dk)

• T – total time
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N Method P NIT NFV NFG NCG T

1. CHDM 0 4 108 4 242 4 129 0 8.84

3. DLM-1 0 5 731 5 898 5 751 0 10.05
3. DLM-2 0 6 370 6 504 6 391 0 10.84
4. DLCHM 0 5 719 5 913 5 740 0 10.24
5. CGM 0 4 965 5 317 4 987 62 837 12.25
6. PCGM 1 7 639 7 851 7 659 8 445 17.03
6. PCGM 2 7 569 7 778 7 589 8 386 16.56
7. CGDLM(5) 0 3 957 4 104 3 978 23 463 8.06
8. LM(100) 0 5 076 5 426 5 097 71 035 12.97
9.(a) LCGM(5) 0 4 718 5 116 4 737 64 384 13.59
9.(a) LCGM(5) 1 6 065 6 183 6 087 9 188 12.66
9.(a) LCGM(5) 2 5 905 6 053 5 925 7 872 12.33
9.(b) CGLM(10) 0 4 986 5 312 5 007 75 463 12.45

Tab. 1: Sum of squares minimization, n = 1000.

N Method P NIT NFV NFG NCG T

1. CHDM 0 8 391 8 566 35 824 0 2:02.44

3. DLM-1 0 9 657 10 133 42 425 0 1:55.77
3. DLM-2 0 9 717 10 195 42 452 0 1:52.20
4. DLCHM 0 9 625 10 150 42 260 0 1:56.05
5. CGM 0 16 894 19 163 83 933 358 111 6:04.42
6. PCGM 1 10 600 11 271 50 385 3 767 2:25.42
6. PCGM 2 10 599 11 269 50 382 83 2:26.88
7. CGDLM(5) 0 8 938 9 276 39 032 47 236 2:02.84
8. LM(100) 0 14 679 16 383 71 483 366 695 6:41.45
9.(a) LCGM(5) 0 14 906 16 751 72 727 355 106 6:26.30
9.(a) LCGM(5) 1 8 347 8 454 35 939 4 329 1:48.87
9.(a) LCGM(5) 2 8 346 8 454 35 933 624 1:49.67
9.(b) CGLM(10) 0 15 655 17 723 76 696 394 060 6:30.89

Tab. 2: Unconstrained minimization, n = 5000.

If we consider preconditioning with matrix C, then P = 1 or P = 2. The latter
case means that before starting the iteration process we test whether solution w? of
system Cw = −g satisfies condition ‖Bw? +g‖ ≤ ε‖g‖. If this is so, we’ll set d? = w?

and the conjugate gradient method will be omitted.

Methods number 2 and 10, which are based on the knowledge of eigenvalues, are
not tested. The former method uses large dense matrix Q, so it is not suitable for
large scale structured problems, and the latter one consumes very much CPU time
for eigenpairs computation.
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If NCG = 0, then the method uses matrix decompositions instead of the conjugate
gradient method.

See http://www.cs.cas.cz/~luksan/test.html for more details.

References

[1] Conn A.R., Gould N.I.M., Toint P.L.: Trust-region methods. SIAM, Philadel-
phia, 2000.

[2] Fletcher R.: Practical methods of optimization. 2nd edition, John Wiley & Sons,
Chichester, 1987.

[3] Lukšan L.: Metody s proměnnou metrikou. Academia, Praha, 1990.
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