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NUMERICAL MODELING OF FLOW AND POLLUTION
DISPERSION OVER REAL TOPOGRAPHY™

Ludék Benes, Karel Kozel, Ivo Sladek

1. Introduction

The Atmospheric Boundary Layer (ABL) is the lowest part of the atmosphere.
Its thickness usually ranges from several hundred meters to approximately two kilo-
meters. The air pollution resulting from rapid industrialization has become a serious
environmental problem mainly in the North Bohemia region. In this contribution,
the influence of several types of obstacles on dustiness of coal depot in open coal
mine was numerically modeled.

2. Mathematical models

In our computations, the flow in ABL is assumed to be viscous, steady, incom-
pressible, turbulent and indifferently stratified. Two different mathematical and
numerical methods have been used for numerical simulations.

e The full RANS model

The first model is based on Reynolds Averaged Navier—Stokes equations. The gov-
erning equations are considered in the conservative, non-dimensional, and vector
form:

Wi+ F,+G,+ H,=(KR), + (KS), + (KT), + f, (1)

where F' = (u, u>+p, wv, uw, uC )T, G = (v, vu, v2+p, vw, vC)T, H = (w, wu, w,
w? + p, wC)T, R = (0, uy, vz, wy, Cfoc)?, S = (0, uy, v, wy,, C,/oc)t, T =
0, u, v, w,, C./oc). W = (p/B?% u, v, w, C)T stands for the vector of unknown
variables the pressure, three velocity components V = (u,v,w)”, and the concentra-
tion of passive pollutant, respectively. Further f, denotes the volume force, o¢ is
the turbulent Prandtl’s number, § artificial compressibility coefficient and finally
K represents the turbulent diffusion coefficient, see equation (5). The artificial com-
pressibility method is used for the numerical solution of this model.

¢ Boussinesq equations

The NS equations are simplified by the so called Boussinesq approximation. The
instantenous values of the density, pressure and potential temperature can be de-
composed into two parts: the large synoptic scale part denoted by subscript ¢ and
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its perturbation denoted by ”. Then the governing equations for the neutrally strat-
ified flow can be rewritten in the following form

(Pot)z + (pov)y + (pw). =0, (2)
vy 1

VitV oV, Ve = ===+ g KVala + [ KV, + [0 KV} + fo (3)
0 0

The transport equations for the passive pollutant C' is

K K K
Cy + uCy +vCy + wC, = [(C’m> + (Cy> + (OZ> 1 : (4
x i z

oc oc oc

~—

2.1. Turbulence model

Closure of both systems of governing equations (1) and (2)—(4) is achieved by

a simple algebraic turbulence model designed for ABL flow. The model is based on

the Bousinesq hypothesis. The diffusion coefficient K has the following form in the
dimensional case

K =v+uvr, vr = Py (u.)? + (v,)2, (5)

where vy and v are the turbulent and laminar viscosities. The mixing length [ is
according to Blackadar computed from

k(2 + 20)

- 27|V, 1070
1+ k(24 2)/ e B

oo = 280 (©

where k is the von Karman constant, A denotes the Coriolis parameter, 2y the rough-
ness length, /. denotes the mixing length for z — oo and V} is the geostrophic wind
velocity at the upper boundary of the domain.

3. Numerical methods

We have solved the governing systems of equations with stationary boundary con-
ditions and we suppose that we obtain the expected steady-state solution for ¢t — oo.
Structured non-orthogonal grids made of hexahedral (in 3D case) and quadrilateral
(in 2D case) control cells are used.

3.1. Finite volume method

The finite volume method (cell-centered type) together with the 3—stage explicit
Runge-Kutta time integration scheme have been applied to solve equation (1). For
discretization of viscous fluxes, a second octohedral mesh was used.

The numerical method is theoretically second order accurate in space and time on
orthogonal grids. In addition, it must be stabilized by the artificial viscosity term of
fourth order to remove spurious oscillations in the flow-field due to sharp gradients
of computed quantities and also due to the central differences used for the space
discretization of convective terms.
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3.2. Finite difference method

A semi-implicit finite difference scheme has been used for the model (2)—(4). The
special combination of different nonsymmetric space discretizations at time level n
and n + 1 leads to the numerical scheme that is centered and second order both
in space and time. In order to improve the convergence of this method for large
Reynolds numbers the artificial viscosity terms either of the fourth or the second
order are added. To discretize the governing system (2)—(4) we have constructed
a non-orthogonal structured boundary—terrain fitted mesh.

3.3. Boundary conditions

Both models use the following boundary conditions.
o Inlet: uw = Uy(z/L)*, v=w = C =0, where L is vertical length of the domain and
« is a power law exponent (we usually set v = 2/9).
e Outlet: u, = v, = w, =C, =0.
e Wall: the no-slip condition for the velocity components, 9C'/On = 0.
e Top: u= Uy, v=0,0w/0z=0C/0z=0.
e Sides: periodic or non—periodic.

3.4. Validation of models

The first model (1) has been validated through the ERCOFTAC’s test-case of
fully developed channel flow over 2D polynomial-shaped hill mounted on a flat plate.
The Almeida’s experimental and the ERCOFTAC’s k — ¢ reference numerical data
have been used for the comparison, see [5].

The second model (2)—(4) has been validated on the experimental and reference
numerical data obtained by G.H. Kim [6]. Boundary layer type of flow over the
sinusoidal 2D-single-hills of different shapes has been tested [1].

The results from both validation studies has shown very good agreement with
the target data.

4. Numerical results

This practical problem is related to the flow over a surface coal field located in the
open coal mine in the North Bohemia. This numerical study is a continuation of the
project we have been solving since 2001 in cooperation with Brown Coal Research
Institute in Most. The major task was to design a safety obstacle close to a coal
depot in order to decrease the level of pollutant concentrations in the down stream
region which is inhabited. Several types of obstacles as solid wall, protective tree
line, forest block and shelter belt were tested.

The influence of the forest blocks and the protective walls on the dustiness of the
coal depot has been studied on the real topography of the coal depot.

The model of a real 3D relief was created on the basis of the topographic data
obtained by the Brown Coal Research Institute in Most. The whole topography has
been divided into two parts. The computational Domain 1, (see Figs. 1,2) is 800 m
long, 480 m wide and the upper side is at 1000 m. The coal depot has dimensions
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80 x 20m and it is situated at the origin. For better resolution of the flow field close
to the depot, the second Domain 2 400 x 240 m was imbedded (see Fig. 2). The
data obtained on Domain 1 were used as the boundary and initial conditions for the
computations on Domain 2.

Both domains have been discretized using 100 x 60 x 40 mesh cells, so the horizon-
tal resolution is 8 m on Domain 1 and 4 m on Domain 2. Both grids are significantly
thickened close to the ground with A, .~ 0.6m. Two variants were computed
in 3D: basic (without protective obstacles) and with two forest blocks situated be-
fore and behind the coal depot.

The solid wall was simulated by the column of a few cells. All the velocity
components have been set to zero in all of these cells. For the forest block, the
force vector ﬁ, includes the specific aerodynamic force corresponding to the drag
induced by the vegetation, i.e.

fo = (=ralV]u, =ralVo, —ra|V]w)". (7)

Here the 7,(z) denotes the total resistance parameter. The vertical profile of this
parameter has been set-up in the following way:

rz/(0.75h) for 0<z/h<0.75,

ra(2) = { r(l—z/h)/(1-0.75)  for 0.75 < z/h < 1.0,

(8)

where the drag coefficient value r is given a priori.

The other parameters are: mean free stream velocity U = 10m/s, roughness pa-
rameter zp = 0.1 m and power law exponent 2/9 are used for the inlet velocity profile
(Domain 1). The forest blocks are 10 m high with the drag coefficient r = 0.19. The
wall is 5m high.
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Fig. 2: Computational Domain 1, Do-
main 2 (larger rectangle), coal depot
Fig. 1: Topography of the mine-Domain 1. (smaller rectangle).
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Fig. 3: Velocity vectors close to the coal Fig. 4: Velocity vectors close to the coal
depot — basic situation. Colored by the con-  depot — situation with two forests. Colored
centration. by the concentration.
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Fig. 5: Concentration of the pollution in ~ Fig. 6: Concentration of the pollution in
the logarithmic scale completed by altitude  the logarithmic scale completed by altitude
— basic situation. — sttuation with two forests.

In Figs. 3 and 4 and Figs. 5 and 6 we can see the comparison of the flow field and
the pollution dispersion in two different cases — basic and with two forests before
and behind the coal depot. From these figures one can see considerable reduction of
the dustiness in the second case. It is due to the significant deceleration of the flow
behind the forest on the area of coal depot.

The majority of variants has been tested in 2D only. From Domain 1 the 2D mid-
dle cut (y = 0) was chosen. This cut was discretized by 800 x 40 cells (horizontal
resolution 1m), vertical distribution is the same as in 3D. Also the other computa-
tional parameters are the same as in 3D.

The seven different positions and combinations of walls and forests were com-
puted in 2D case: basic — without protective obstacles (zak), with the forest block
before (a) behind (b) and on both sides (ab) of the depot, and with the wall be-
fore (fa) behind (fb) and on both sides (fab).
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Fig. 7: Basic variant — velocity compo- Fig. 8: Basic var. — velocity component u
nent u. with streamlines close to the coal depot.

Fig. 9: Variant ab — velocity component u Fig. 10:

‘ Variant fab — wvelocity compo-
with streamlines close to the c.d.

nent u with streamlines close to the c.d.
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Fig. 11: The longitudinal distribution of Fig. 12: The longitudinal distribution of
near-ground velocity in case of forest. near-ground velocity in case of walls.

Figs. 7-10 show the comparison of the basic variant with two different cases
in 2D: with forest on both sides (ab) of the coal depot and also with a wall on
both sides (fab). In Fig. 10 large recirculation zones behind the walls are shown. In
contrast, the flow going through the forest is decelerated smoothly without recircu-
lation, Fig. 9.

In our model, the source intensity is proportional to the vertical velocity gradient,
and the mesh is uniform on the coal depot. Therefore the local source intensity is
proportional to the ground velocity.

Fig. 11 and Fig. 12 shows the longitudinal distribution of near ground velocity
for an obstacle of type forest block (left) and walls (right).

14



References

1]

L. Benes, T. Bodnar, Ph. Fraunié, K. Kozel: Numerical modelling of pollution
dispersion in complex terrain. In: G. Latini, C.A. Brebbia (eds), Air Pollution
IX., Southampton, WIT Press, 2001, 85-94.

T. Bodnér, Ph. Fraunié, K. Kozel, I. Sladek: Numerical simulation of complex
atmospheric boundary layer problems. In: J.M. Redondo (ed.), ERCOFTAC Bul-
letin No. 60, March 2004, 5-12.

T. Bodnér, I. Sladek, E. Gulikova: Numerical simulation of wind flow in the
vicinity of forest block. In: S.N. Atluri (ed.), Advances in Computational & Ex-
perimental Engineering & Sciences. Forsyth, Tech Science Press, 2004, 554-559.

E. Gulikova, T. Bodnar, V. Pisa: Improvement of numerical models for solu-
tion of dust air pollution. In: J. Pithoda, K. Kozel (eds.), Colloquium FLUID
DYNAMICS 2006, Prague, I'T ASCR, 2005, 63-66.

G.P. Almeida, D.F.G. Durao, M.V. Heitor: Wake flows behind two dimensional
model hills. Exp. Thermal and Fluid Science 7, 1992, 87-101.

G.H. Kim, M.Ch. Lee, C.H. Lim, H.N. Kyong: An ezperimental and numerical
study on the flow over two-dimensional hills. Journal of Wind Eng. and Industrial
Aerodynamics 66, 1997, 17-33.

15



