
PANM 13

Aleš Kropáč; Michal Křížek
On the longest-edge bisection algorithm

In: Jan Chleboun and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Prague, May 28-31, 2006. Institute of Mathematics AS CR, Prague, 2006.
pp. 149–155.

Persistent URL: http://dml.cz/dmlcz/702830

Terms of use:
© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702830
http://dml.cz


ON THE LONGEST-EDGE BISECTION ALGORITHM∗

Aleš Kropáč, Michal Kř́ıžek

There are many methods for refining finite element simplicial partitions in Rd,
d ∈ {2, 3, . . . }. One of them is the longest-edge bisection algorithm. It is very
popular for its simplicity, especially in the three-dimensional space. It chooses the
longest edge in a given simplicial partition. Dividing this edge by its midpoint,
we can define a locally refined partition by simplices that surround this midpoint.
Repeating this process, we obtain a family of nested face-to-face partitions (see
Figures 1, 2, and 4). This approach is much simpler (especially for d > 2) than the
standard local refinement of simplicial partitions that uses red and green subdivisions
(see, e.g., [3], [7]). Note that this family is never uniquely defined, since during the
refinement process there appear many new edges having the same length due to
the bisections. For instance, the last but one bisection in Figure 1 is not uniquely
determined.

There is an extensive literature devoted to numerical analysis of the longest-edge
bisection algorithm, see [1]–[20]. For instance, Rosenberg and Stenger [16] for d = 2
show that angles of triangles do not tend to zero for infinitely many steps of a bisec-
tion algorithm. A somewhat stronger result has been achieved by M. Stynes [20] who
showed that the repeated bisection process yields only a finite number of similarity-
distinct subtriangles. This number is bounded when the discretization parameter h
tends to zero. However, Stynes admits the so-called hanging nodes which do not
appear in face-to-face partitions considered in this paper.

Without loss of generality we can analyse the longest-edge bisection algorithm
only for one simplex from a given initial simplicial partition. In Figures 1 and 2,
we observe subsequent partitions of a triangle and a tetrahedron by the longest-edge
bisection algorithm.

The worst case from the point of degeneracy happens when the regular simplex
is bisected (see [5]). For instance, for the equilateral triangle, the minimal angle is
halved. On the other hand, this situation does not occur while bisecting obtuse and
right triangles. In the next theorem we prove that in this case the minimal angle
does not change.

Theorem 1. Let α be the smallest angle of a nonacute triangle. Bisecting the
longest edge determines two triangles whose all angles are not less than α.

∗This paper was supported by Institutional Research Plan nr. AV0Z 10190503 and Grant
nr. 201/04/1503 of the Grant Agency of the Czech Republic.
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Fig. 1:

Fig. 2:

P r o o f . Let a nonacute triangle be given. Denote its angles so that

α ≤ β ≤ π

2
≤ γ (1)

and let

a ≤ b ≤ c (2)

be the associated edges.

Now bisect the triangle by the median t to the longest edge c. Denote the new
angles by α1, β1, γ1, and γ2 as illustrated in Figure 3. We show that all these angles
are not less than α.
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By the Cosine theorem we see that

a2 = t2 +
( c

2

)2

− tc cos α1,

b2 = t2 +
( c

2

)2

− tc cos β1.

From this and (2) we find that cos α1 ≥ cos β1. Since α1 + β1 = π and the function
cos is decreasing on the whole interval [0, π], we have

α1 ≤ π

2
≤ β1. (3)
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Fig. 3:

Denote vertices of the original triangle ABC as marked in Figure 3. Let D be
the midpoint of the segment AB and let C ′ be such a point that D is the midpoint
of the segment CC ′, i.e., ACBC ′ is a parallelogram. Using the triangle inequality
for the triangle ACC ′ and relation (2), we get 2t < a + b ≤ 2b, i.e.,

t < b.

From this and the Sine theorem we obtain

sin α

a
=

sin β

b
<

sin β

t
=

sin α1

a
,

which implies that
α ≤ α1. (4)

Finally, by (1) we know that γ ≥ π
2
, and therefore, t ≤ c

2
. Using again the Sine

theorem, we come to
α ≤ γ2, β ≤ γ1. (5)

From this, (1), (3), and (4) the lemma follows.
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Remark 1. It is γ2 ≤ γ1, since by (5) and (1) we have

2 sin γ2

c
=

sin α

t
≤ sin β

t
=

2 sin γ1

c
.

Remark 2. From the inequality

b ≥ a + b

2
>

c

2

we observe that the edge b will be bisected in the next step.

Theorem 2. Let α0 be the minimum angle in a given triangulation. Then the
longest-edge bisection algorithm yields the following lower bound for any angle α of
refined triangles:

α ≥ α0

2
.

The proof is quite complicated and technical. It is based on some ideas from [16].
We see that for the equilateral triangle the above lower bound α0/2 is attainable.
Let us point out that a similar theorem, which guarantees a nondegeneracy in d = 3,
is still an open problem, even though all triangles on surfaces of all tetrahedra in the
partition will be bisected in the same way as for d = 2.

Numerical tests. In Figure 4, we observe the initial triangulation and the result
of the longest-edge bisection algorithm after 10 and 1000 refining steps.

Fig. 4:

To illustrate that repeated bisection process yields only a finite number of simila-
rity-distinct subtriangles, we have chosen the initial triangle with vertices (0,0),
(10,0), and (9,3.2). Numerical results in Figure 5 indicate that this number is
bounded when h → 0 (cf. [20] for a different approach which produces hanging
nodes, in general). In this test we performed 1000 bisections. In Figure 6 we observe
values of the maximal and minimal angles from the interval (0◦, 180◦) during the
1000 bisections. The minimal angle ≈ 18◦ does not change.
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