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ŠINDEL SEQUENCES AND THE PRAGUE HOROLOGE∗

Michal Kř́ıžek, Alena Šolcová, Lawrence Somer

1. Introduction

The mathematical model of the astronomical clock of Prague was developed by
the professor of Prague University, Jan Ondřej̊uv, called Šindel (see [2]). The clock
was realized by Mikuláš from Kadaň around 1410. The ingenuity of clockmakers of
that time can be demonstrated by the following construction.

The astronomical clock of Prague contains a large gear with 24 slots at increasing
distances along its circumference (see Figure 1). This arrangement allows for a pe-
riodic repetition of 1–24 strokes of the bell each day. There is also a small auxiliary
gear whose circumference is divided by 6 slots into segments of arc lengths 1, 2, 3, 4,
3, 2 (see Figure 1). These numbers form a period which repeats after each revolution
and their sum is s = 15. At the beginning of every hour a catch rises, both gears
start to revolve and the bell chimes. The gears stop when the catch simultaneously
falls back into the slots on both gears. The bell strikes 1 + 2 + · · ·+ 24 = 300 times
every day. Since this number is divisible by s = 15, the small gear is always at the
same position at the beginning of each day.

Fig. 1: The number of bell strokes is denoted by the numbers ..., 9, 10, 11, 12, 13, ...
along the large gear. The small gear placed behind it is divided by slots into segments of
arc lengths 1, 2, 3, 4, 3, 2. The catch is indicated by a small rectangle on the top.

When the small gear revolves it generates by means of its slots a periodic sequence
whose particular sums correspond to the number of strokes of the bell at each hour,
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In [4] we showed that we could continue in this way until infinity. However, not all
periodic sequences have such a nice summation property. For instance, we immedi-
ately find that the period 1, 2, 3, 4, 5, 4, 3, 2 could not be used for such a purpose,
since 6 < 4+3. Also the period 1, 2, 3, 2 could not be used, since 2+1 < 4 < 2+1+2.

2. Connections with triangular numbers and periodic sequences

In this section we show how the triangular numbers

Tk = 1 + 2 + · · ·+ k =
k(k + 1)

2
, k = 0, 1, 2, . . . , (2)

are related to the astronomical clock. We shall look for all periodic sequences that
have a similar property as the sequence 1, 2, 3, 4, 3, 2 in (1), i.e., that could be used
in the construction of the small gear. Put N = {1, 2, . . . }.

A sequence {ai}∞i=1 is said to be periodic, if there exists p ∈ N such that

∀ i ∈ N : ai+p = ai. (3)

The finite sequence a1, . . . , ap is called a period and p is called the period length.
The smallest p satisfying (3) is called the minimal period length and the associated
sequence a1, . . . , ap is called the minimal period.

Definition 1. Let {ai} ⊂ N be a periodic sequence. We say that the triangular
number Tk for k ∈ N is achievable by {ai}, if there exists a positive integer n such
that

Tk =
n∑

i=1

ai. (4)

The periodic sequence {ai} is said to be a Šindel sequence if Tk is achievable by {ai}
for every k ∈ N, i.e.,

∀ k ∈ N ∃n ∈ N : Tk =
n∑

i=1

ai. (5)

The triangular number Tk on the left-hand side is equal to the sum 1 + · · · + k
of hours on the large gear, whereas the sum on the right-hand side expresses the
corresponding rotation of the small gear (see Figure 2). For the kth hour, we have

k = Tk − Tk−1 =
n∑

i=m+1

ai, (6)

where Tk−1 =
∑m

i=1 ai. Since ai > 0, the number n depending on k in (5) is unique.
From (2) and (4) we also see that a1 = 1 when {ai} is a Šindel sequence.
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Fig. 2: The bullets in the kth row indicate the number of strokes at the kth hour (see (6)).
The numbers denote lengths of segments on the small gear.

3. Necessary and sufficient condition for the existence of a Šindel sequence

First we need to define quadratic residues and nonresidues.

Definition 2. Let n ≥ 2 and a be integers. If the quadratic congruence

x2 ≡ a (mod n)

has a solution x, then a is called a quadratic residue modulo n. Otherwise, a is called
a quadratic nonresidue modulo n.

Lemma 1. If f and h are nonnegative integers, then 8f + 1 is a quadratic residue
modulo 2h.

The proof is a consequence of [5, pp. 105–106]). From now on let

s =

p∑
i=1

ai (7)

denote the sum of the period.

Theorem 1. A periodic sequence {ai} is a Šindel sequence if and only if for any
n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s.
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P r o o f . ⇐=: Let a periodic sequence {ai} not be a Šindel sequence. According
to (5), there exist positive integers `,m, and j such that am ≥ 2, j ≤ am − 1, and

T` =
m∑

i=1

ai − j. (8)

Let n ∈ {1, . . . , p} be such that n ≡ m (mod p). Then by (2), (8), (7), and (3),

(2`+1)2 = 4`2 +4`+1 = 8T` +1 = 8
( m∑

i=1

ai− j
)

+1 ≡ 8
( n∑

i=1

ai− j
)

+1 (mod s),

i.e., 8
(∑n

i=1 ai − j
)

+ 1 is a square modulo s.

=⇒: Let {ai} be a Šindel sequence with s = 2cd, where c ≥ 0 and d is odd.
Suppose to the contrary that there exist positive integers n, j, and x such that
n ≤ p, an ≥ 2, j ≤ an − 1, x ≤ s, and

w = 8
( n∑

i=1

ai − j
)

+ 1 ≡ x2 (mod s). (9)

From Lemma 1 and (9) there exists y such that

x2 ≡ w (mod d), (10)

y2 ≡ w (mod 2c+3).

By the Chinese remainder theorem (see [3, p. 15]) there exists an integer u ≥ 3
such that u ≡ x (mod d) and u ≡ y (mod 2c+3). Thus, by (10),

u2 ≡ x2 ≡ w (mod d),

u2 ≡ y2 ≡ w (mod 2c+3).

Since gcd(d, 2c+3) = 1, we see that

u2 ≡ w (mod 2c+3d). (11)

Clearly, u is odd, since w is odd. So let u = 2` + 1, where ` ≥ 1. Then, by (11),
u2 = 4`2 + 4` + 1 = w + 2c+3dg for some integer g. Hence, since u ≥ 3, we find
by (2), (11), and (9) that

T` =
u2 − 1

8
=

w − 1

8
+ 2cdg ≡

n∑
i=1

ai − j (mod s).

Thus, there exists a positive integer m such that m ≡ n (mod p) and

T` =
m∑

i=1

ai − j,

which contradicts the assumption that {ai} is a Šindel sequence.
As a byproduct of the proof of Theorem 1, we get the well-known result (see

also [1, p. 15] and Figure 3):
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Fig. 3: The early Pythagoreans knew that if r is a triangular number, then 8r + 1 is
a square. This result is mentioned as early as about 100 A.D. in Platonic Questions by the
Greek historian Plutarch, see [6, p. 4].

Corollary 1. A positive integer r is a triangular number if and only if 8r + 1 is
a square.

Remark 1. In Theorem 1, we require that

w = 8
( n∑

i=1

ai − j
)

+ 1

be a quadratic nonresidue modulo s for various values of n and j when {ai} is a Šindel
sequence. A sufficient condition for this to occur is that w be a quadratic nonresidue
for some odd prime q dividing s. To see that this condition is not necessary, consider
the periodic sequence {ai} given in Example 2 below with p = 11, s = 25, and the
period 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4. Then

8
( 5∑

i=1

ai − 2
)

+ 1 = 65,

which is a quadratic nonresidue modulo 25, but is a quadratic residue modulo 5.
Note that 5 is the only odd prime dividing s = 25.

Remark 2. Consider the sequence {ai} with period 1, 2, 1, 1, 1, . . . , 1. Note that

w = 8
( 2∑

i=1

ai − 1
)

+ 1 = 17.

By Theorem 1 and the law of quadratic reciprocity one sees that (cf. [3, pp. 23–25])
if s is an odd prime and s ≡ 1, 2, 4, 8, 9, 13, 15 or 16 (mod 17), then w is a quadratic
residue modulo s and thus, {ai} is not a Šindel sequence. Other patterns of the
period of periodic sequences {ai} can be similarly investigated.
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4. Construction of the primitive Šindel sequence

Definition 3. A Šindel sequence {a′i} with the minimal period length p + 1 is said
to be composite, if there exists a Šindel sequence {ai} and ` ∈ N such that

ai = a′i, i = 1, . . . , `− 1,

a` = a′` + a′`+1,

ai = a′i+1, i = ` + 1, . . . , p.

The period 1, 2, 3, 2, 2, 3, 2 derived from the period 1, 2, 3, 4, 3, 2 of sequence (1)
produces a composite Šindel sequence. In other words, the astronomical clock would
also work with the small gear corresponding to this composite Šindel sequence.

Definition 4. A Šindel sequence {ai} is called primitive if it is not composite. The
sequence 1, 1, 1, . . . is called a trivial Šindel sequence.

The proof of the next theorem contains an explicit algorithm for finding a prim-
itive Šindel sequence for a given s.

Theorem 2. Let s be a positive integer. Then there exists a unique primitive
Šindel sequence {ai} such that (7) holds for one of its not necessarily minimal period
lengths p. The primitive Šindel sequence {ai} is trivial if and only if s = 2h for
h ≥ 0.

P r o o f . Let 1 ≤ b1 < b2 < · · · < bt ≤ s be all the integers such that each 8bn +1 is
a square modulo s for n = 1, . . . , t. We observe that b1 = 1 and bt = s. Now choose
the period as follows: a1 = b1 and an = bn − bn−1 for n = 2, 3, . . . , t. Then

∀n ∈ {1, 2, . . . , t} : bn =
n∑

i=1

ai.

We claim that {ai} is a Šindel sequence. Note that if n ∈ {1, . . . , t}, an ≥ 2,
and j ∈ {1, 2, . . . , an − 1}, then bn−1 <

∑n
i=1 ai − j < bn. Then 8(

∑n
i=1 ai − j) + 1

is a quadratic nonresidue modulo s, since 8b1 + 1, . . . , 8bt + 1 are all the quadratic
residues modulo s. It now follows from Theorem 1 that {ai} is a Šindel sequence.

Moreover, one sees that {ai} is a primitive Šindel sequence having a period length
p = t and satisfying (7). It is also clear by construction that {ai} is the unique
primitive Šindel sequence satisfying (7) for some period length p.

⇐=: By the above construction of the period, the primitive Šindel sequence cor-
responding to s is nontrivial if and only if there exists a positive integer f ≤ s such
that 8f + 1 is a quadratic nonresidue modulo s. By Lemma 1, 8f + 1 is always
a quadratic residue modulo s = 2h for h ≥ 0. Hence, the primitive Šindel sequence
corresponding to s = 2h is the trivial Šindel sequence.

=⇒: Conversely, assume that s has an odd prime divisor q. Let d be a quadratic
nonresidue modulo q. Since 8 is invertible modulo q, one sees that if z is the inverse
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of 8 modulo q and f ≡ z(d − 1) (mod q), then 8f + 1 ≡ d (mod q). It now follows
that the primitive Šindel sequence corresponding to s is nontrivial.

We have the following immediate corollaries to Theorems 2 and 1:

Corollary 2. Let {ai} be a periodic sequence with the minimal length p of the
period and s = 2m, where m is a nonnegative integer. Then {ai} is a Šindel sequence
if and only if {ai} is the trivial Šindel sequence.

Corollary 3. A periodic sequence {ai} is a primitive Šindel sequence if and only if
for any n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s and

v = 8
n∑

i=1

ai + 1

is a quadratic residue modulo s.

Theorem 3. For any k ∈ N there exist ` ∈ N and a Šindel sequence {ai} such that
a` = k.

P r o o f . It was stated in Corollary 1 that for r ∈ N, 8r + 1 is a square if and only
if r is a triangular number. Let k = Tk − Tk−1 be given (see (6)). Thus it suffices by
the proof of Theorem 2 to find a positive integer s ≥ Tk such that 8(Tk−1 + j) + 1 is
a quadratic nonresidue modulo s for j = 1, 2, . . . , k − 1.

For a fixed j ∈ {1, . . . , k − 1} let

8(Tk−1 + j) + 1 =
v∏

i=1

pαi
i

be the prime power factorization. Since 8(Tk−1 + j) + 1 is not a square, some αi is
odd. Without loss of generality, we can assume that α1 is odd. Let c1 be a quadratic
nonresidue modulo p1. By the Chinese remainder theorem and Dirichlet’s theorem
on the infinitude of primes in arithmetic progressions, one can find a prime qj ≥ Tk

such that qj ≡ 1 (mod 4), qj = c1 (mod p1), and qj ≡ 1 (mod pi) for i ∈ {2, . . . , v}.
By the law of quadratic reciprocity and the properties of the Jacobi symbol
(see [3, p. 24–25]), 8(Tk−1 + j) + 1 is a quadratic nonresidue modulo qj. Now simply
let s be the product of the distinct qj’s for j ∈ {1, . . . , k − 1}. .
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5. Numerical examples

We developed a program that generates the primitive Šindel sequence for a given s.
It is based on the numerical algorithm presented in the proof of Theorem 2. By this
theorem we know that the primitive primitive Šindel sequence is uniquely determined
for each positive integer s.

s Primitive Šindel sequences

1 1

2 1 1

3 1 2

4 1 1 1 1

5 1 2 2

6 1 2 1 2

7 1 2 3 1

8 1 1 1 1 1 1 1 1

9 1 2 3 3

10 1 2 2 1 2 2

11 1 2 1 2 4 1

12 1 2 1 2 1 2 1 2

13 1 1 1 3 2 2 3

14 1 2 3 1 1 2 3 1

15 1 2 3 4 3 2

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 2 4 1 4 2

18 1 2 3 3 1 2 3 3

19 1 1 1 3 1 2 1 5 2 2

20 1 2 2 1 2 2 1 2 2 1 2 2

21 1 2 3 1 3 3 2 6

22 1 2 1 2 4 1 1 2 1 2 4 1

23 1 2 2 1 3 1 3 2 5 1 1 1

24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

25 1 2 2 1 4 1 4 1 4 1 4
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Example 1. The period 1, 2, 3, 4, 5, 3, 3, 7, 2, 3, 3, 9 with minimal period length
p = 12 and s = 45 yields a primitive Šindel sequence {ai} with a large value of
a12 = 9 relative to s (see Theorem 3).

Example 2. The next table shows values of all primitive Šindel sequences for s =
1, . . . , 25. Anyway, we verified that no primitive Šindel sequence up to s = 1000
has such a nice symmetry property as that in (1). From the table we also observe
that trivial primitive Šindel sequences appear when s = 2h for some h ≥ 0 (see
Theorem 2).
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