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AN UNSTEADY NUMERICAL SOLUTION OF VISCOUS
COMPRESSIBLE FLOWS IN A CHANNEL∗

Petra Punčochářová, Karel Kozel, Jǐŕı Fürst, Jaromı́r Horáček

Abstract

The work deals with numerical solution of unsteady flows in a 2D channel where
one part of the channel wall is changing as a given function of time. The flow is
described by the system of Navier-Stokes equations for compressible (laminar) flows.
The flow has low velocities (low Mach numbers) and is numerically solved by the
finite volume method. Moving grid of quadrilateral cells is considered in the form of
conservation laws using ALE (Arbitrary Lagrangian-Eulerian) method.

1. Introduction

This work presents an unsteady numerical solution of the system of Navier-Stokes
equations for compressible laminar flow. An unsteady flow is caused by the moving
part of the channel wall. The authors investigated flows in two types of channels,
in an nonsymmetric channel and in a symmetric channel. The flow in a symmetric
channel can represent a very simple model of airflow in a human vocal tract.

The numerical solution was obtained by the explicit central finite volume version
of MacCormack scheme on a grid of quadrilateral cells.

2. Mathematical model

The 2D system of Navier-Stokes equations (1) was used as mathematical model
to describe an unsteady viscous compressible laminar flow in a channel. The system
is expressed in non-dimensional form:

Wt + Fx + Gy =
1

Re
(Rx + Sy), (1)

W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F and G are the vectors
of inviscid fluxes, R and S are the vectors of viscous fluxes. Variable ρ denotes the
density, u and v are the components of the velocity vector, and e is the total energy
per unit volume. Static pressure p in the inviscid fluxes is expressed by the equation
of state. Reynolds number Re = ρ∞u∞H/η∞ is computed from the inflow variables:
ρ∞ = const, u∞ = const, η∞ = const, and H is the inflow width of the channel.
Non-dimensional dynamic viscosity η = 1/Re is constant in our cases.

∗This work was supported by grant GA AV ČR No. IAA 2007 60613 and by Research Plan
MSM No. 6840770010.
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2.1. Mathematical formulation

For the numerical solution, the domain of solution D and the boundary conditions
have to be defined. Two channels were tested. The first is an nonsymmetric channel
and the second is a symmetric channel. Boundary conditions were considered in the
following form:
a) Upstream conditions: three components of W are given, the pressure is extrapo-
lated.
b) Downstream conditions: the pressure is given, the other values are extrapolated
or ∂W/∂~n = 0 where ~n is an outlet normal vector.
c) On the solid wall, the velocity vector and the normal derivative of temperature
vanish that is (u, v)wall = ~0 and ∂T/∂~n = 0.
d) At the axis of symmetry, (u, v) · ~n = 0 is considered.

Figure 1 shows D1, the domain of solution, which is called the nonsymmetric
channel. The upper and lower boundary represent solid walls. The lower solid wall
of the channel has a time changing part between points A and B that is a given
function of time g1(t).

Fig. 1: Domain of solution D1 (the nonsymmetric channel).

Figure 2 shows D2, the domain of solution in the symmetric channel. The compu-
tational domain is only the lower half of the channel. Its upper boundary coincides
with the axis of symmetry. The lower boundary represents a solid wall. The part
of the wall between points A and B is changing and determined by g2(t), a given
function of time.

Fig. 2: Domain of solution D2 (the symmetric channel).
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3. Numerical solution

The numerical solution of the above two-dimensional problems is obtained by the
finite volume method in the cell centered form (FVM) on a grid of quadrilateral cells.

The bounded domain D is divided into mutually disjoint sub-domains Di,j (e.g.
quadrilateral cells). Equations (1) are integrated over subdomain Di,j. By using
the Green formula and the Mean Value Theorem, we can write the integral form of
FVM:

Wt|i,j =
−1

µi,j

[∮

∂Di,j

(Fdy −Gdx)−
∮

∂Di,j

(Rdy − Sdx)

]
, (2)

where µi,j =
∫ ∫

Di,j
dxdy stand for the volumes of the cells. We get FVM in the

differential form:

W n+1
i,j −W n

i,j

∆t
=
−1

µi,j

∑

k

[(F̃k − R̃k)∆yk − (G̃k − S̃k)∆xk], (3)

where ∆t = tn+1−tn is the time step. Physical fluxes F, G, R, S on edge k of cell Di,j

are replaced by numerical fluxes F̃ , G̃, R̃, S̃. The particular choice of numerical fluxes
and of the time derivative approximation depend on a chosen numerical scheme.

3.1. Numerical scheme

The explicit MacCormack (MC) scheme in the predictor-corrector form is used
to approximate system (1). This scheme is 2nd order accurate in time and space.

W
n+1/2
i,j = W n

i,j −
∆t

µi,j

4∑

k=1

[(F̃ n
k − s1kW

n
k − R̃n

k)∆yk − (G̃n
k − s2kW

n
k − S̃n

k )∆xk],

W̄ n+1
i,j =

1

2
(W n

i,j + W
n+1/2
i,j )− ∆t

2µi,j

4∑

k=1

[(F̃
n+1/2
k − s1kW

n+1/2
k − R̃

n+1/2
k )∆yk

−(G̃
n+1/2
k − s2kW

n+1/2
k − S̃

n+1/2
k )∆xk]. (4)

Equation (4) represents the MC scheme for a viscous flow in a domain with a moving
grid of quadrilateral cells. The moving grid in an unsteady domain is described by
using the Arbitrary Lagrangian-Eulerian (ALE) method which defines the projection
of reference domain D0 to a time-dependent domain Dt [1]. Consequently, additional
fluxes ~skWk appear in the MC scheme, where vector ~sk represents the speed of edge k.
The approximations of conservative variable Wk and diffusive components Rk, Sk

on edge k are central. The second derivatives (dissipative terms) on an edge are
approximated using dual volumes [2] as is shown in Figure 3.

The inviscid numerical fluxes are approximated as follows:

F̃ n
1 = F n

i,j, F̃
n+1/2
1 = F

n+1/2
i+1,j , F̃ n

3 = F n
i−1,j, F̃

n+1/2
3 = F

n+1/2
i,j ,

G̃n
2 = Gn

i,j, G̃
n+1/2
2 = G

n+1/2
i,j+1 , G̃n

4 = Gn
i,j−1, G̃

n+1/2
4 = G

n+1/2
i,j , etc.

(5)
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Fig. 3: Finite volume Di,j, dual volume V ′
k.

The last term of the MC scheme is the Jameson artificial dissipation AD(Wi,j)
n,

which is added to schemes with higher order of accuracy to stabilize the numerical
solution:

AD(Wi,j)
n = C1γ1(W

n
i+1,j − 2W n

i,j + W n
i−1,j) + C2γ2(W

n
i,j+1 − 2W n

i,j + W n
i,j−1), (6)

where C1, C2 ∈ R are constants and the normed pressure gradients have the form:

γ1 =
|pn

i+1,j − 2pn
i,j + pn

i−1,j|
|pn

i+1,j|+ 2|pn
i,j|+ |pn

i−1,j|
, γ2 =

|pn
i,j+1 − 2pn

i,j + pn
i,j−1|

|pn
i,j+1|+ 2|pn

i,j|+ |pn
i,j−1|

. (7)

Then we can compute a vector of conservative variables W at a new time level tn+1:

W n+1
i,j = W̄ n+1

i,j + AD(Wi,j)
n. (8)

Stability condition of the scheme (on a regular orthogonal grid) limits the time step

∆t ≤ CFL

( |umax|+ c

∆xmin

+
|vmax|+ c

∆ymin

+
2

Re

( 1

∆x2
min

+
1

∆y2
min

))−1

, (9)

where c denotes the local speed of sound, CFL < 1, and the minimal step of the
grid in the y-direction is ∆ymin ≈ 1/

√
Re due to boundary layer.

4. Numerical results

For numerical computation, domains D1 and D2 (see Figures 1, 2) are covered
with a grid of quadrilateral cells. The cells near the wall boundary have successive
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refinement in the y-direction (due to the existing boundary layer) as shown in detail
in Figure 1. The results are depicted as Mach number isolines and as the velocity
vectors.

4.1. Numerical results in domain D1

The length and width of domain D1 are L = 12 and H = 0.5, and D1 con-
tains 600 × 50 cells. Parametres considered for computation: the outflow pressure
is p2 = 0.9p∞ and it corresponds to the inflow Mach number M∞ = 0.120 and
Re = 5 · 105. Figure 4 shows the steady solution of viscous laminar flow in the non-
symmetric channel where the moving part of the solid wall (see Figure 1) is fixed.
The maximum Mach number in the domain was computed to be Mmax = 0.345. Fig-
ure 5 (a, b, c, d, e) shows the development of unsteady viscous compressible laminar
flows in domain D1 at several time layers starting by the second period. For the
computation of the unsteady solution, the steady solution was used as the initial
state.

Fig. 4: The steady solution of a viscous laminar flow in the nonsymmetric channel, p2 =
0.9p∞, Re = 5 · 105, Mmax = 0.345, 600× 50 cells.

4.2. Numerical results in domain D2

The length and width of domain D2 are L = 8 and H = 0.4, and D2 contains
400 × 50 cells. Parametres considered for computation: the inlet Mach number
M∞ = 0.02, the dimension frequency of the solid wall between points A, B (see Fig-
ure 2) is fdim = 20 Hz and Re = 9 · 103. These values approximately correspond to
the real flow in the human vocal tract. Figure 6a) shows the steady solution of vis-
cous laminar flow in the symmetric channel where the moving part of the solid wall
is fixed. The maximum Mach number in the domain was computed, Mmax = 0.096.
Figure 6b) shows convergence to a steady solution that is observed using L2 norm of
momentum residuals (ρu). It seems to be relatively good for this case with a very
low Mach number. Figure 7 (a, b, c, d, e) shows development of unsteady viscous
compressible laminar flows in domain D2 at several time layers starting by the third
period. For computation of the unsteady solution, the steady solution was used as
the initial state. In Figure 7b), one can see typical behaviour with choking flows
in a very narrow part of the channel and with the time development of flow includ-
ing separation domains. The geometry of domain D2 and the boundary conditions
represent a simple model of flow in the human vocal tract [3, 4].

We also tried to compute both cases without the artificial dissipation AD(Wi,j)
n.

In this case, however, the convergence to the steady state was not satisfactory.
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a) t = 2π, Mmax = 0.455

b) t = 2π + π
2 , Mmax = 0.338

c) t = 3π, Mmax = 0.374

d) t = 2π + 3π
2 ,Mmax = 0.568

e) t = 4π, Mmax = 0.464

Legend to Mach numbers:

Fig. 5: The unsteady solution of a viscous laminar flow in the nonsymmetric channel,
p2 = 0.9p∞, Re = 5 · 105, 600× 50 cells.
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a) Numerical result

b) Convergence to a steady solution – residual vs. number of iterations

Fig. 6: The steady solution of a viscous laminar flow in the symmetric channel, M∞ =
0.02, Re = 9 · 103, Mmax = 0.096, 400× 50 cells.

5. Summary

The calculation numerical approximations of steady state solutions for inviscid
compressible flows with very low Mach numbers is a very difficult task and special
methods have to be used. For viscous compressible problems, the method described
above can be successfully used for the steady as well as unsteady numerical solutions
of flows with low Mach numbers.
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a) t = 4π, Mmax = 0.094

b) t = 4π + π
2 , Mmax = 0.077

c) t = 5π, Mmax = 0.129

d) t = 4π + 3π
2 ,Mmax = 0.145
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e) t = 6π, Mmax = 0.102

Legend to Mach numbers:

Fig. 7: The unsteady solution of a viscous laminar flow in the symmetric channel, M∞ =
0.02, Re = 9 · 103, 400× 50 cells.
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