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AN APPLICATION OF THE AVERAGED GRADIENT TECHNIQUE∗

Jan Chleboun

Dedicated to Ivan Hlaváček on the occasion of his 75th birthday.

1. Introduction

Gradient averaging (also known as gradient recovery (GR)) is a technique for
improving the accuracy of an approximate gradient obtained via a numerical method.
Sensitivity analysis deals with analyzing the response of a function (or a functional)
to a small perturbation of its input values. In this contribution, we limit ourselves
to gradients originating from finite element solutions of boundary value problems
(BVPs) and to criterion-functionals that evaluate these solutions. Our goal is to
show that the use of a gradient recovery technique in sensitivity analysis formulae
can result in a better assessment of the quality of approximate minimizers of criterion-
functionals that appear in parameter identification problems or the worst scenario
method, for example.

Let us finish this short introductory part with a few words to honor Ivan Hlaváček
from the Institute of Mathematics of the Academy of Sciences of the Czech Repub-
lic who recently celebrated his 75th birthday. He has pioneered a mathematically
rigorous analysis of the worst scenario problems since the mid-nineties and also con-
tributed to the family of gradient averaging techniques. The following pages thus
pay tribute to his scientific achievements.

2. Averaged gradient

The idea to improve the accuracy of an approximate gradient calculated by the
finite element method is more than two decades old and has materialized in numerous
applications. Take, for example, Zienkiewicz-Zhu error estimators stemming from [8].
The contribution of Czech mathematicians is not negligible, see [2, 3, 4, 5, 6], for
instance.

Although various recovery techniques have been designed, let us confine ourselves
to a simple averaging method proposed and analyzed in [3].

Let Ω ⊂ R2 be a bounded domain with a polyhedral Lipschitz boundary. Let
F = {Th}h→0 be a family of triangulations of Ω, where h is the maximum diameter

∗This research was supported by the Ministry of Education, Youth, and Sports of the Czech Re-
public through contract MSM 6840770003. The author’s participation in the PANM 14 Conference
was made possible through grant No. IAA100190803 from the Grant Agency of AS CR.
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Fig. 1: Auxiliary points: for an inner node (left), for a boundary node (right).

of all elements K ∈ Th. Let Vh = {vh ∈ C(Ω) : vh|K ∈ P1(K) ∀K ∈ Th}, where
P1(K) stands for the space of linear polynomials on K.

For a mesh node Z, we draw two lines parallel to the axes (see Figure 1), find
their intersections with the edges of those triangles that share the vertex Z, and
label these intersection points A1, A2, B1, and B2 as in Figure 1. We then set

ai = (Ai − Z)i, bi = (Bi − Z)i, i = 1, 2.

For vh ∈ Vh, the components of the weighted averaged gradient Ghvh ∈ Vh at Z
are defined as follows

(Ghvh(Z))i = αivh(Ai)− (αi + βi)vh(Z) + βivh(Bi), (1)

where i = 1, 2 and αi = bi/(ai(bi − ai)), βi = ai/(bi(ai − bi)).
If v ∈ C(Ω), then (1) can also be applied (with vh replaced by v) to define

Ghv ∈ Vh, a continuous piece-wise linear approximation of ∇v.
We refer to [3] for details and a generalization to R3 as well as for situations that

are not covered by Figure 1.
The features of F are substantial for the order of accuracy of Ghv. Let us recall

that F is called a strongly regular family of triangulations if

∃κ > 0 ∀Th ∈ F ∀K ∈ Th κh ≤ %K ,

where %K is the radius of the largest ball inscribed in K.
It is known, see [3, Theorem 3.8], that if q ∈ (1,∞) and F is strongly regular,

then a constant C > 0 exists such that for any v belonging to the Sobolev space
W 3

q (Ω), the following estimate holds (note the order h2)

‖∇v −Ghv‖0,q,Ω ≤ Ch2|v|3,q,Ω ∀Th ∈ F . (2)

Let us focus on the recovered gradient of a finite element (FE) solution.
We consider u ∈ V0 = H1

0 (Ω) (W 1
2 (Ω)-functions with zero trace), a unique weak

solution to the following V0-elliptic BVP

− div(λ̃∇u) = f in Ω, (3)

u = 0 on ∂Ω, (4)
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where λ̃ ∈ W 2
2+ε(Ω) for some ε > 0 and f ∈ W 1

q (Ω). Let us remark that λ̃ can be a
symmetric matrix of functions, see [3]. It is assumed that u ∈ W 3

q (Ω), where q > 2.
Next, uh ∈ V 0

h = V0 ∩ Vh, the piece-wise linear FE approximation of u, is defined
through ∫

Ω

λ̃(x)∇uh(x) · ∇vh(x) dx =

∫

Ω

f(x)vh(x) dx ∀vh ∈ V 0
h . (5)

To obtain a result similar to (2), we
have to resort to more stringent as-
sumptions about the meshes.
Let us consider F ′ ⊂ F , a special
class of smoothly distorted uniform
meshes, see [7, 3] for details and
Figure 2 for an illustration of such
a mesh.
For these meshes and for a fixed
subdomain Ω0 ⊂⊂ Ω, an analogue
to (2) holds, see [3, page 22], Fig. 2: Distorted uniform mesh.

‖∇u−Ghuh‖0,2,Ω0 ≤ C(u)h2. (6)

3. A parameter identification application

In this section, we will introduce a parameter identification problem.
For simplicity, let λ̃ be controlled by six parameters forming a vector λ, that is,

λ = (λ1, . . . , λ6) and

λ̃(x) = λ1 + λ2x1 + λ3x2 + λ4x
2
1 + λ5x1x2 + λ6x

2
2, x = (x1, x2) ∈ Ω.

We define the criterion-functional (and its approximation) that appears in para-
meter identification problems:

Ψ(λ) =

∫

Ω

|∇u(λ)−∇w|2 dx and Ψh(λ) =

∫

Ω

|∇uh(λ)−∇w|2 dx,

where Ψ evaluates u(λ), the λ-dependent weak solution to (3)–(4), and Ψh evaluates
uh(λ) determined by (5). In both cases, w is a given function.

Let λ ∈ Uad ⊂ R6, where Uad is a set of admissible parameters. The specification of
Uad is not necessary for the purposes of this paper; roughly speaking, Uad is a compact
subset of R6 such that the BVP is uniformly V0-elliptic with respect to λ ∈ Uad.

We formulate a parameter identification problem and its approximation: Find
λ0 ∈ Uad and λh

0 ∈ Uad such that λ0 = arg min
λ∈Uad

Ψ(λ) and λh
0 = arg min

λ∈Uad

Ψh(λ).
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An elementary sensitivity analysis (see [1]) results in

∂Ψh

∂λi

(λ) = −
∫

Ω

∂λ̃

∂λi

∇uh · ∇zh dx, i = 1, 2, . . . , 6, (7)

where zh ∈ V 0
h is the solution to the adjoint equation

∫

Ω

λ̃∇zh · ∇vh dx =

∫

Ω

2(∇uh −∇w) · ∇vh dx ∀vh ∈ V 0
h (Ω). (8)

Computational experiments show that a gradient minimization procedure based
on the derivative (7) is quite efficient in the search for λh

0 . Nevertheless, the degree
of accuracy of λh

0 and Ψh(λ
h
0) remains unknown.

To obtain at least an indicator of the (in)accuracy of the minimization results,
we will apply the above-mentioned gradient recovery technique.

Let us define both a new functional

ΨG
h (λ) =

∫

Ω

|Ghuh(λ)−∇w|2 dx, (9)

where uh = uh(λ) solves (5), and a new equation determining zG
h ∈ V 0

h through
∫

Ω

λ̃∇zG
h · ∇vh dx =

∫

Ω

2(Ghuh −∇w) · ∇vh dx ∀vh ∈ V 0
h . (10)

Strictly speaking, (10) is not the exact adjoint equation to (9) and (5) because the
right-hand side of (10) is not the exact derivative of ΨG

h with respect to uh; see [1] for
the derivation of adjoint equations. As a consequence, zG

h does not yield the exact
derivative of ΨG

h . However, the approximation, i.e.,

∂ΨG
h

∂λi

(λ) ≈ −
∫

Ω

∂λ̃

∂λi

∇uh(λ) · ∇zG
h (λ) dx, i = 1, 2, . . . , 6,

is sufficiently accurate to be used in solving the following minimization problem:
Find

λh,G
0 = arg min

λ∈Uad

ΨG
h (λ). (11)

We end up with two approximate minimum points, that is, λh
0 and λh,G

0 , with two
respective approximate state solutions uh(λ

h
0) and uh(λ

h,G
0 ), and three approximate

criterion-functional values, namely Ψh(λ
h
0), ΨG

h (λh
0), and ΨG

h (λh,G
0 ); the fourth value,

Ψh(λ
h,G
0 ), is not relevant for our purposes.

The distances

σλ =
∣∣∣λh

0 − λh,G
0

∣∣∣ , σΨ =
∣∣∣Ψh(λ

h
0)−ΨG

h (λh,G
0 )

∣∣∣ , and σG
Ψ =

∣∣∣ΨG
h (λh

0)−ΨG
h (λh,G

0 )
∣∣∣

can indicate an inaccuracy in the approximation of the exact solution pair λ0 and
Ψ(λ0). For h → 0+, it should be σλ, σΨ, σG

Ψ → 0.
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Let us remark that there is no guarantee that λh,G
0 approximates λ0 better than

λh
0 does.

Example
The problem is defined by Ω = (−3, 3) × (−3, 3), w = exp(−x2

1 − x2
2), and Ψ(λ) =

1000‖∇(u − w)‖2
0,2,Ω. The right-hand side function f , see (3), is determined by w

and a predefined polynomial λ̂. Although w does not comply with the homogeneous
boundary condition, the difference is rather small and, for λ̂, the state solution u is
close to w. A distorted mesh is formed by 800 triangles (h = 0.3).

The minimization process starts at λs = (2, 2, 2, 2, 2, 2); we obtain Ψh(λs) = 1641
(GR not used) and ΨG

h (λs) = 1693 (GR is used).
The calculated results are as follows

Ψh(λ
h
0) = 93.9 GR is not used in the minimization,

ΨG
h (λh

0) = 26.5 GR is applied just to uh(λ
h
0),

ΨG
h (λh,G

0 ) = 3.9 GR is used in the minimization,

σλ = 0.21, σΨ = 90.0, σG
Ψ = 22.6.

The minimum value Ψh(λ
h
0) = 93.9 is the result of the minimization procedure

where ∇uh(λ) is piece-wise constant. There is no indication whether or not Ψh(λ
h
0)

is close to Ψ(λ0). If the averaged gradient of uh(λ
h
0) is evaluated by the criterion-

functional, we obtain ΨG
h (λh

0) = 26.5, which shows that Ghuh is a better approxima-
tion of ∇w. This can be anticipated because ∇w is most significant in a subdomain
Ω0 ⊂⊂ Ω and (6) holds. The minimization based on (9) leads to even lower min-
imum ΨG

h (λh,G
0 ) = 3.9, which says that the averaged gradient of the state solution

uh(λ
h,G
0 ) is so far the best approximation to ∇w. Nevertheless, ∇uh(λ

h,G
0 ) (piece-

wise constant) does not outweigh ∇uh(λ
h
0) because the latter results in the criterion

minimum value without GR. As indicated by σλ = 0.21, the difference between λh
0

and λh,G
0 is rather significant.

We can draw a few conclusions: (a) for the given h, Ψh(λ
h
0) is not a good ap-

proximation of Ψ(λ0) (note that Ψh(λs) seems to be a sufficient approximation of
Ψ(λs) because GR leads to a change of only 3%); (b) we can expect that Ψ(λ0) is
“close” to zero; (c) the values Ψh(λ

h
0), ΨG

h (λh
0), and ΨG

h (λh,G
0 ) are significantly differ-

ent; this means that both a refinement of the mesh as well as further minimization
in the neighborhood of λh

0 or λh,G
0 are necessary to gain confidence in the calculated

minimum.
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fruitful discussions.
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[5] M. Kř́ıžek, P. Neittaanmäki: Superconvergence phenomenon in the finite element
method arising from averaging gradients, Numer. Math. 45 (1984), 105–116.

[6] M. Kř́ıžek, P. Neittaanmäki: On a global superconvergence of the gradient of
linear triangular elements, J. Comput. Appl. Math. 18 (1987), 221–233.

[7] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite-
element approximations, IMA J. Numer. Anal. 5 (1985), 407–427.

[8] O. C. Zienkiewicz, J.Z. Zhu: A simple error estimator and adaptive procedure
for practical engineering analysis, Int. J. Num. Meth. Eng. 24 (1987), 337–357.

70


