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THE NUMERICAL SOLUTION OF COMPRESSIBLE FLOWS
IN TIME DEPENDENT DOMAINS∗

Václav Kučera, Jan Česenek

Abstract

This work is concerned with the numerical solution of inviscid compressible fluid
flow in moving domains. Specifically, we assume that the boundary part of the domain
(impermeable walls) are time dependent. We consider the Euler equations, which
describe the movement of inviscid compressible fluids. We present two formulations
of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These
two formulations are discretized in space by the discontinuous Galerkin method. We
apply a semi-implicit linearization with respect to time to obtain a numerical scheme
requiring the solution of only one linear system on each time level. We apply the
method to the compressible flow around a moving (vibrating) profile.

1. Continuous problem

In this paper we shall be concerned with two-dimensional inviscid compressible
flow in a bounded domain Ωt ⊂ R2 depending on time t ∈ [0, T ]. We assume that
the boundary of Ωt consists of three disjoint parts ΓI , ΓO, ΓWt : ∂Ωt = ΓI ∪ΓO ∪ΓWt ,
where ΓI and ΓO represent the time-independent inlet and outlet, respectively, and
ΓWt represents moving impermeable walls.

As the governing equations we take the Euler equations written in the conserva-
tive form

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in Ωt, t ∈ (0, T ), (1)

where
w = (w1, . . . , w4)

T

= (ρ, ρv1, ρv2, E)
T

is the so-called state vector and

f s(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (E + p) vs)
T

are the Euler inviscid fluxes of the quantity w in the directions xs, s = 1, 2. We
use the following notation: ρ - density, p - pressure, E - total energy, v = (v1, v2)
- velocity vector, γ > 1 - Poisson adiabatic constant (we take γ = 1.4 for air),
a =

√
γp/ρ - local speed of sound.

∗This work is a part of the research project No. MSM 0021620839 of the Ministry of Education
of the Czech Republic. The research was also partly supported by the Grant No. 201/08/0012 of
the Czech Grant Agency.
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System (1) is completed by the thermodynamical relation arising from the equa-
tion of state

p = (γ − 1)(E − ρ |v|2 /2),

furthermore by the initial condition

w(x, 0) = w0(x), x ∈ Ω, (2)

and boundary conditions, which are treated in Section 4

As in [6] we define the flux of the quantity w in the direction n = (n1, n2) ∈ R2,
n2

1 + n2
2 = 1, by

F (w, n) =
2∑

s=1

f s(w)ns

and its Jacobi matrix

P(w,n) =
DF (w,n)

Dw
=

2∑
s=1

As(w)ns, (3)

where

As(w) =
Df s(w)

Dw
, s = 1, 2,

are the Jacobi matrices of the mappings f s. It is possible to show that f s, s = 1, 2,
are homogeneous mappings of order one, which implies that

f s(w) = As(w)w, s = 1, 2, (4)

and

F (w,n) = P(w,n)w. (5)

The matrix P is diagonalizable, i.e.

P = TΛT−1, (6)

where T = T(w, n) is a nonsingular matrix and

Λ = diag(λ1, . . . , λ4) (7)

is the diagonal matrix with entries

λ1 = v · n− a, λ2 = λ3 = v · n, λ4 = v · n + a, (8)

which are the eigenvalues of the matrix P. (See, e.g. [6], Section 3.1.5.)
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2. ALE formulation

In order to treat the time dependance of the domain, we use the so-called arbitrary
Lagrangian-Eulerian ALE technique. We define a reference domain Ω0 and regular
one-to-one ALE mapping of Ω0 onto Ωt (cf. [8], [9] and [10])

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt.

Here we use the notation X for points in Ω0 and x for points in Ωt.
Further, we define the ALE velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0,

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt,

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), (9)

where
f̃(X, t) = f(At(X), t), X ∈ Ω0, x = At(X).

The following relations are a direct consequence of the chain rule:

DAf

Dt
=

∂f

∂t
+ z · ∇f =

∂f

∂t
+ div (zf)− f div z.

This leads to two different formulations of the Euler equations in ALE form.
Formulation 1:

DAw

Dt
+

2∑
s=1

∂f s(w)

∂xs

− z · ∇w = 0. (10)

Formulation 2:
DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs

+ w divz = 0, (11)

where gs, s = 1, 2, are modified inviscid fluxes

gs(w) := f s(w)− zsw.

3. Discretization of the problem in the time dependent domain

In this section, we shall describe the discretization of the initial-boundary value
problem for the Euler equations written in the ALE forms (10) and (11). In the pre-
sented work we shall use the discontinuous Galerkin finite element method (DGFEM)
for space semi-discretization. For an overview of various applications of the discon-
tinuous Galerkin methods cf. [2].
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3.1. Notation

In what follows we shall assume that Ωt is a polygonal domain for all t. Let Tht

be a partition of the closure Ωt into a finite number of closed triangles with mutually
disjoint interiors. We shall call Tht a triangulation of Ωt. We do not require the
standard conforming properties of Tht used in the finite element method. This means
that we admit the so-called hanging nodes. We shall use the following notation.
By ∂K we denote the boundary of an element K ∈ Tht and set hK = diam(K),
h = maxK∈Tht

hK . By ρK we denote the radius of the largest circle inscribed into K
and by |K| we denote the area of K.

Let K,K ′ ∈ Tht. We say that K and K ′ are neighbours, if the set ∂K ∩ ∂K ′ has
positive length. We say that Γ ⊂ K is a face of K, if it is a maximal connected open
subset either of ∂K ∩ ∂K ′, where K ′ is a neighbour of K, or of ∂K ∩ ∂Ωt. By Fht

we denote the system of all faces of all elements K ∈ Tht. Further, we define the set
of all inner faces by

F I
ht = {Γ ∈ Fht; Γ ⊂ Ωt}

and the set of all boundary faces by

FB
ht = {Γ ∈ Fht; Γ ⊂ ∂Ωt} .

Obviously, Fht = F I
ht ∪ FB

ht.

For each Γ ∈ Fht we define a unit normal vector nΓ. We assume that for Γ ∈ FB
ht

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face
Γ ∈ F I

ht the orientation of nΓ is arbitrary but fixed cf. Figure 1. Finally, by d(Γ) we
denote the length of Γ ∈ Fht.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Fig. 1: Typical DG triangulation with possible hanging nodes.

121



3.2. Spaces of discontinuous functions

For each face Γ ∈ F I
ht there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Tht such that

Γ ⊂ K
(L)
Γ ∩K

(R)
Γ . We use the convention that nΓ is the outer normal to the element

K
(L)
Γ and the inner normal to the element K

(R)
Γ , see Figure 2. Let p ≥ 1 be an integer.

The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sht = {v; v|K ∈ P p(K),∀K ∈ Tht}4,

where P p(K) denotes the space of all polynomials on K of degree ≤ p. For v ∈ Sht

and Γ ∈ F I
ht we introduce the following notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|(R)
Γ .

Now, let Γ ∈ FB
ht and K

(L)
Γ ∈ Tht be such an element that Γ ⊂ ∂K

(L)
Γ ∩ ∂Ωt. For

v ∈ Sht we set

vΓ = v|(L)
Γ = v|(R)

Γ = the trace of v|
K

(L)
Γ

on Γ,

i.e. we define v|(R)
Γ by extrapolation.

If [·]Γ and 〈·〉Γ appear in an integral of the form
∫
Γ
. . . dS, we omit the subscript

Γ and write simply [·] and 〈·〉.

3.3. Space semidiscretization

3.3.1. Formulation 1

In order to derive the discrete problem, we assume that w is a sufficiently regular
solution of system (10), multiply (10) by a test function ϕ ∈ Sht, integrate over any
element K apply Green’s theorem and sum over all K ∈ Tht. We get the relation

∑
K∈Tht

∫

K

DAw(t)

Dt
·ϕ dx =

∑
K∈Tht

∫

K

2∑
s=1

f s(w(t)) · ∂ϕ

∂xs

dx

−
∑

Γ∈Fht

∫

Γ

2∑
s=1

f s(w(t))ns · [ϕ] dS −
∑

K∈Tht

∫

K

2∑
s=1

zs
∂w

∂xs

·ϕ dx.

Now the exact solution w(t) is approximated by an element wh(t) ∈ Sht and the
fluxes through the faces Γ are approximated as in the finite volume method with the
aid of a numerical flux Hf = Hf (u,w,n). It means that on edge Γ

2∑
s=1

f s(w(t))ns ≈ Hf (wh|(L)
Γ (t),wh|(R)

Γ (t),n).
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In this work we take Hf as the Vijayasundaram numerical flux consistent with the
fluxes f s, s = 1, 2, cf. [11]. Taking into account (3) we define the “positive” and
“negative” parts of the matrix P as

P± = TΛ±T−1,

where
Λ± = diag(λ±1 , . . . , λ±4 ),

and λ+ = max(λ, 0), λ− = min(λ, 0). Using the above concepts, we introduce the
Vijayasundaram numerical flux

Hf (w
(L),w(R), n) = P+ (〈w〉, n) w(L) + P− (〈w〉,n) w(R).

Finally we can define the discrete forms defining the discrete form of formulation 1:

(
DAwh

Dt
, ϕh

)

ht

=

∫

Ωht

DAwh

Dt
·ϕh dx,

b̃
(1)
h (wh, ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

f s(wh) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fht

∫

Γ

Hf (wh|(L)
Γ , wh|(R)

Γ ,nij) · [ϕh] dS,

d
(1)
h (wh, ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

zs
∂w

∂xs

·ϕ dx.

3.3.2. Formulation 2

We proceed similarly as in the preceding section. We multiply (11) by a test
function ϕ ∈ Sht, integrate over any element K, apply Green’s theorem and sum
over all K ∈ Tht. We get the relation

∑
K∈Tht

∫

K

DAw(t)

Dt
·ϕ dx =

∑
K∈Tht

∫

K

2∑
s=1

gs(w(t)) · ∂ϕ

∂xs

dx

−
∑

Γ∈Fht

∫

Γ

2∑
s=1

gs(w(t))ns · [ϕ] dS −
∑

K∈Tht

∫

K

divz (w ·ϕ) dx.

Now the exact solution w(t) is approximated by an element wh(t) ∈ Sht and the
fluxes through the faces Γ are approximated with the aid of a numerical flux Hg =
Hg(u,w,n). It means that on edge Γ

2∑
s=1

gs(w(t))ns ≈ Hg(wh|(L)
Γ (t),wh|(R)

Γ (t), n). (12)
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Here Hg is an analogy to the Vijayasundaram numerical flux consistent with the
fluxes gs, s = 1, 2. We have

Dgs(w)

Dw
=

Df s(w)

Dw
− zsI = As − zsI

and can write

P̃(w,n) =
2∑

s=1

Dgs(w)

Dw
ns =

2∑
s=1

(Asns − zsnsI) = P(w,n)− (z · n)I.

This, (6), (7) and (8) imply that

P̃ = TΛ̃T−1, Λ̃ = diag(λ̃1, . . . , λ̃4), λ̃i = λi − z · n, i = 1, . . . , 4.

Now we define the “positive” and “negative” parts of the matrix P̃ as

P̃± = TΛ̃±T−1

and we introduce the modification of the Vijayasundaram numerical flux

Hg(w
(L),w(R),n) = P̃+ (〈w〉,n) w(L) + P̃− (〈w〉,n) w(R).

Finally we can define the discrete forms of formulation 2:

b̃
(2)
h (wh,ϕh) = −

∑
K∈Tht

∫

K

2∑
s=1

gs(wh) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fht

∫

Γ

Hg(wh|(L)
Γ ,wh|(R)

Γ ,nij) · [ϕh] dS,

d
(2)
h (wh,ϕh) = −

∑
K∈Tht

∫

K

divz (wh ·ϕ) dx.

Finally we define an approximate solution of (10) and (11), respectively, as a func-
tion wh = wh(t) satisfying the conditions

(a) wh(t) ∈ Sht, ∀t ∈ [0, T ] ,

(b)

(
DAwh(t)

Dt
,ϕh

)

h

+ b̃h(wh(t),ϕh)− dh (wh(t), ϕh) = 0, (13)

∀ϕh ∈ Sht, ∀t ∈ (0, T ),

(c) wh(0) = Πhw
0,

where Πhw
0 is the L2(Ω0)-projection of w0 from the initial condition (2) on the space

Sh0. Relation (13) represents a discrete formulation of (10) and (11), when setting

b̃h := b̃
(1)
h , dh := d

(1)
h and b̃h := b̃

(2)
h , dh := d

(2)
h , respectively.
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3.4. Time discretization

In this section we shall introduce the time discretization of problem (13). Due
to the similarity of the two formulations we treat here only the second formulation.
The discrete problem (13) is equivalent to a large system of ordinary differential
equations. In order to avoid a CFL-stability condition we apply a semi-implicit
scheme, which is a generalization of the techniques proposed in [4] and [7].

We introduce the partition 0 = t0 < t1 < . . . of the time interval [0, T ] and
set τj = tj+1 − tj. The function wh(·, tj) will be approximated by wj, defined in
Ωtj . Let us assume that the approximate solution wj

h has already been computed
for j = 0, . . . , k. We are interested in the computation of the approximate solution
wk+1

h at time instant tk+1. If we set

ŵj
h(x) = wj

(
Atj

(
A−1

tk+1

)
(x)

)
, x ∈ Ωhtk+1

,

then, on the basis of (9), we can approximate the ALE derivative using the first order
backward difference:

(
DAwh(x, t)

Dt
, ϕh

)∣∣∣∣
tk+1

≈
(

wk+1(x)− ŵk
h(x)

τk

,ϕh

)
, x ∈ Ωhtk+1

.

Further, on the basis of (4), (5) and the definition of the modified Vijayasundaram

numerical flux we define a partial linearization b
(2)
h of the form b̃

(2)
h :

b
(2)
h (ŵk

h,w
k+1
h ,ϕh) = −

∑
K∈Tht+1

∫

K

2∑
s=1

(As(ŵ
k)− zs)I)wk+1) · ∂ϕh

∂xs

dx (14)

+
∑

Γ∈Fht+1

∫

Γ

[
P̃+

(〈ŵk
h〉, nij

)
wk+1

h |Γij
+ P̃−

(〈ŵk
h〉,nij

)
wk+1

h |Γji

]
·ϕh dS.

The term d
(2)
h linear with respect to wh will be treated implicitly.

These considerations lead us to the following semi-implicit scheme: For k =
0, 1, . . . find wk+1

h such that

(a) wk+1
h ∈ Shtk+1

,

(b)

(
wk+1

h − ŵk
h

τk

,ϕh

)
+ b

(2)
h (ŵk

h, w
k+1
h , ϕh)− d

(2)
h

(
wk+1

h , ϕh

)
= 0,

∀ϕh ∈ Shtk+1
,

(c) w0
h = Πhw

0.

This relation represents a system of linear algebraic equations on each time level
which is solved either iteratively using the block-Jacobi preconditioned GMRES or
a direct method (e.g. the direct unsymmetric multifrontal solver UMFPACK cf. [3]).
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4. Boundary conditions

If Γ ⊂ ∂Ωht, it is necessary to specify the boundary state w|(R)
Γ appearing in the

numerical flux H in the definition of the inviscid form bh.
On the inlet and outlet, which are fixed, we proceed in the same way as in [7],

Section 4, where we prescribe the state w|(R)
Γ in such a way that the locally linearized

Euler equations are well posed. On the impermeable moving wall we prescribe the
normal component of the velocity

v · n = z · n, (15)

where n is unit outer normal to ΓWt and z is the wall velocity. This is done by
prescribing the numerical flux H on ΓWt . Again we shall treat only formulation 2.
We define the numerical flux as the physical flux through the boundary with the
assumption (15) taken into account. We write:

2∑
s=1

gs(w)ns = (v · n− z · n)w + p (0, n1, n2,v · n)T = p (0, n1, n2,v · n)T =: Hg

on ΓWt . We proceed similarly in formulation 1.

5. Limiting procedure at discontinuities

For high speed flows with shock waves and contact discontinuities it is necessary to
avoid the Gibbs phenomenon manifested by spurious overshoots and undershoots in
computed quantities near discontinuities. In order to avoid the Gibbs phenomenon,
we apply the limiting procedure from [7] based on the discontinuity indicator

gk(K) =

∫

∂K

[ρ̂k
h]

2 dS/(hK |K|3/4), K ∈ Thtk+1
,

introduced in [5]. The density ρ̂k
h represents the first component of the state vec-

tor ŵk
h. Then we define the discrete discontinuity indicator

Gk(K) =

{
0 if gk(K) < 1,

1 if gk(K) ≥ 1,

and the artificial viscosity forms

βh(ŵ
k
h, w

k+1
h ,ϕh) = ν1

∑
K∈Tht

hKGk(K)

∫

K

∇wk+1
h · ∇ϕh dx,

and

Jh(ŵ
k
h, w

k+1
h , ϕh) = ν2

∑
Γ∈Fht

1

2

(
Gk(K) + Gk(K)

) ∫

Γ

[wk+1
h ] · [ϕh] dS,
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1 2

3 4

5 6

Fig. 2: Density isolines for the periodically oscillating NACA0012 profile.

with ν1, ν2 = O(1). Then the resulting scheme obtained by limiting of (14), (b) has
the form

(a) wk+1
h ∈ Shtk+1

,

(b)

(
wk+1

h − ŵk
h

τk

, ϕh

)

h

+ bh(ŵ
k
h,w

k+1
h , ϕh) + βh(ŵ

k
h, w

k+1
h , ϕh)

+Jh(ŵ
k
h,w

k+1
h , ϕh) = 0, ∀ϕh ∈ Shtk+1

, k = 0, 1, . . . ,

(c) w0
h = Πhw

0.

Remark. In practical computations, the integrals appearing in the definition of
the approximated solution are evaluated with the aid of quadrature formulae. In
order to obtain an accurate, physically admissible solution, it is necessary to use
isoparametric elements near curved boundaries (see [1] or [6], Section 4.6.8). In
our computations we proceed in such a way that a reference triangle is transformed
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by a bilinear mapping onto the approximation of a curved triangle adjacent to the
boundary ∂Ω.

6. Numerical experiments

We consider inviscid compressible flow around the NACA0012 profile, which is
periodically moving in the vertical direction with a periodically varying angle of
attack. Figure 2 shows density contours plotted at six time frames distributed over
one period of the flow. The presented plots represent a part of the computational
domain, which is chosen large in order to eliminate the role of artificial boundaries.

The ALE mapping is defined using two concentric circles with a center at the
center of gravity of the profile. Outside the outer circle the ALE mapping is chosen as
the identity mapping, i.e. no motion of the computational domain takes place. Inside
the inner circle the ALE mapping is defined so that the motion of the computational
domain coincides with the prescribed movement of the profile. In the space between
the two circles the movement of the ALE mapping is linearly interpolated to yield
a globally regular mapping.

In the solution we can observe the formation of vortices in the wake of the airfoil
due to the vibrating motion, which introduces vorticity into the fluid flow. These
vortices are then convected out of the computational domain. The Mach number at
infinity of the flow is M∞ = 0.1.
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