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ON CONSTRUCTION OF THE COARSE SPACE
IN THE BDDC METHOD∗

Jakub Š́ıstek, Pavel Burda, Marta Čert́ıková, Jaroslav Novotný

1. Introduction

Domain Decomposition (DD) methods are getting increasingly popular in various
areas of engineering for offering a convenient way to parallelize analysis by the finite
element method (FEM). Among the most popular members of this family for sym-
metric positive definite problems, such as linear elasticity, are the FETI-DP method
of Farhat et al. [3] and the BDDC method of Dohrmann [1]. It has been recently
proved by Mandel, Dohrmann, and Tezaur [5] that the two methods are spectrally
equivalent, which unifies the theory for both methods and allows application of var-
ious results already known for FETI-DP to BDDC and vice versa.

Both methods use a coarse space based on a set of selected nodes, called corners,
in which the continuity of subdomain solutions is required. These nodes assure that
the subdomain problems are also positive definite and might be solved by a standard
direct method. The set of corners gives rise to an important part of the coarse space
and the corresponding coarse problem.

While corners assure a convenient solvability of subdomain problems, they do
not suffice for robust preconditioning with respect to discretization parameter h in
three dimensions. This fact was first observed for FETI-DP experimentally in [3], and
theoretically in [4]. The theoretical treatment requires adding constraints on equality
of averages over subdomain edges and faces to the coarse problem. This might be
done in a uniform way (as was done in [1, 2]), or in a more sophisticated adaptive
way, which nearly optimally decreases the condition number of the preconditioned
operator (see [6]).

In the present paper, we investigate different and more straightforward approach
to the generation of coarse space, that consists of simple addition of more nodes from
the interface to the set of corners. Although this is not the optimal case, presented
numerical experiments for an industrial application of linear elasticity show that
combining both approaches can lead to synergic effect and further reduce the overall
computational time.

∗This work was supported by grant No. 106/08/0403 of the Czech Science Foundation.
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2. The Schur complement method

Consider a boundary value problem with self-adjoint operator defined on domain
Ω ⊂ R2 or R3. If we discretize the problem by means of the standard finite element
method (FEM), we arrive at the solution of system of linear equations in the matrix
form

Ku = f , (1)

where K is a large, sparse, symmetric positive definite (SPD) matrix and f is the
vector of right-hand-side.

Let us decompose domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . , N .
Unknowns common to at least two subdomains are called boundary unknowns and
the union of all boundary unknowns is called the interface. Remaining unknowns
belong to subdomain interiors.

The first step is the reduction of the problem to the interface. Without loss of
generality, suppose that unknowns are ordered so that interior unknowns form the
first part and the interface unknows form the second part of the solution vector, i.e.

u =
[

uo û
]T

, where uo stands for all interior unknowns and û for unknowns at
interface. System (1) can now be formally rewritten to block form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo
f̂

]
. (2)

The hat symbol (̂) is used to denote global interface quantities. If we suppose the
interior unknowns ordered subdomain after subdomain, then the submatrix Koo is
block-diagonal with each diagonal block corresponding to one subdomain.

After eliminating all the interior unknowns from (2), we arrive to Schur comple-
ment problem for the interface unknowns

Ŝ û = ĝ, (3)

where Ŝ = Krr −KroK
−1
oo Kor is a Schur complement of (2) with respect to interface

and ĝ = f̂ − KroK
−1
oo fo is sometimes called condensed right hand side. Interior

unknowns uo are determined by interface unknowns û as

Koouo = fo −Korû. (4)

The solution can now be divided into three steps: (i) construction of problem (3),
(ii) solution of problem (3), and (iii) resolution of interior unknowns by (4). Because
problem (4) represents N independent subdomain problems with Dirichlet boundary
condition prescribed on the interface, steps (i) and (iii) are performed in parallel
and are very fast. Thus, the main concern represents the solution of problem (3) in
step (ii). This problem is solved by the preconditioned conjugate gradient method
(PCG). Since only matrix-vector multiplications are necessary in PCG, the Schur

complement matrix Ŝ need not be constructed explicitly. Instead, we only need to
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factorize the block Koo and perform the multiplications with Ŝ as Ŝv̂ = Krrv̂−Krow,
where Koow = Korv̂. Also this process may be performed subdomain by subdomain
in parallel, using blocks of local subdomain matrices Ki defined in the next section.

3. The BDDC method

The BDDC method may be viewed as a preconditioner for problem (3) when it
is solved by the PCG method. The main idea of the preconditioner is to split the
problem into independent subdomain problems and the global coarse problem. This
process is described in this section.

Let Ki be the local subdomain matrix obtained by the sub-assembling of element
matrices of elements contained in subdomain Ωi. The global stiffness matrix K might
be obtained by further assembling of these matrices on the interface. We introduce
the coarse space basis functions on each subdomain Ωi represented by columns of
matrix Ψi, which is the solution to the saddle point problem with multiple right
hand sides [

Ki CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
. (5)

This is a key problem in the BDDC method and deserves a careful explanation.
Matrix Λi is a block of Lagrange multipliers, I is an identity block.

Matrix Ci represents constraints on functions Ψi, one row per each. These con-
straints enforce prescribed values of the coarse degrees of freedom on subdomain.
They guarantee continuity of solution in selected points (corners) or equality of av-
erages over some subsets of interface (edges or faces) of adjacent subdomains. While
the former type of constraints corresponds to exactly one nonzero entry in a row
of Ci, the latter leads to several nonzeros in a row. Each column of matrix Ψi

defined by (5) represents one coarse space basis function on subdomain Ωi and cor-
responds to one local coarse degree of freedom.

Using the coarse basis functions Ψi, we define the local coarse matrix KCi =
ΨT

i KiΨi on each subdomain. This matrix has the dimension equal to the number
of constraints for each subdomain.

Let RCi realize the restriction of global coarse degrees of freedom to local coarse
degrees of freedom on subdomain Ωi. Using this matrix, we can construct the global
coarse matrix by the assembling procedure, formally written as

KC =
N∑

i=1

RT
CiKCiRCi. (6)

We are ready to describe the algorithm of the BDDC method. Suppose r̂ = ĝ−Ŝ û
is a residual within the PCG method. Let us define matrices ET

i for distribution
of r̂ to subdomains. Each matrix selects the interface unknowns of subdomain Ωi

and weights them so that the decomposition of unity applies to the residual across
subdomains. It puts zeros to unknowns interior to subdomains. This corresponds
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to computing with Schur complement (see [7] for details). The residual assigned to
subdomain Ωi is computed as ri = ET

i r̂. The subdomain correction from Ωi is now
defined as the solution to system

[
Ki CT

i

Ci 0

] [
zi

λi

]
=

[
ri

0

]
. (7)

The residual for the coarse problem is constructed using the coarse basis functions
subdomain by subdomain and assembling the contribution as

rC =
N∑

i=1

RT
CiΨ

T
i ET

i r̂. (8)

The coarse correction is defined as the solution to problem

KC zC = rC . (9)

Both corrections are then added together and averaged on the interface by matri-
ces Ei to produce the preconditioned residual

ẑ =
N∑

i=1

Ei (ΨiRCizC + zi) . (10)

Properties of the coarse space are fully determined by constraints in matrices Ci.
The more constraints are prescribed, the more efficient preconditioner is constructed,
but the larger coarse space is obtained, making factorization of matrix KC more
expensive.

4. Numerical results

We investigate the two ways of constructing the coarse space on a problem of
elasticity analysis of a turbine nozzle, through which the steam enters the turbine
blades. The geometry is discretized using 2 696 quadratic elements, which leads
to 13 418 nodes and 40 254 unknowns. The mesh was divided into 16 and 32 sub-
domains, respectively. The division into 16 subdomains is depicted in Figure 1.
Presented calculations were performed on 16 processors of SGI Altix 4700 computer
of Supercomputing Centre of Czech Technical University in Prague.

The first experiment consists in adding more interface nodes to the set of corners.
It should be noted that the initial set of corners is already sufficient for all subdomain
problems to be nonsingular, as well as the coarse problem. In Figure 2, we present
the plot of number of PCG iterations with respect to the number of corners. The
effect on condition number is presented in Figure 3.

We can observe from these plots that some initial amount of corners is necessary
for fast decrease of these values, while from some amount, these values behave quite

180



linearly in dependence on number of corners. These points of break are quite impor-
tant, because they correspond to the optimal values of wall clock times presented in
Figure 4. This is caused by the fact that the number of PCG iterations decreases
rapidly at this point, while for adding more corners, the factorization of the growing
coarse problems starts to dominate the time. Thus, it is desirable to set-up the
preconditioner in such a way, that it works around this point or slightly to the right.
The problem is that this point is unknown a priori. For the turbine nozzle, it cor-
responds to approximately 20 percent of all interface nodes for 16 subdomains and
to 25 percent for the case of 32 subdomains. Similar results were also observed for
other industrial problems. Although this value highly depends on problem topology
and division into subdomains, from the practical point of view it seems that putting
as much as a quarter of interface nodes into the set of corners is a reasonable set-up.

In the second experiment, we vary the size of the coarse problem in a conceptually
different way – besides the continuity at corners, we enforce the equality of arithmetic
averages of the approximate solution on all edges, on all faces, and on both edges
and faces.

The results for the division into 16 subdomains are summarized in Table 1 for
the initial set of 30 corner nodes, and in Table 2 for 280 corner nodes, the optimal
number determined in the first experiment.

We can observe that adding constraints on averages can significantly improve the
preconditioner and decrease the computational time. However, averages on faces
might be too expensive considering time of computation. It could also be seen from
the tables that using the optimal number of corner nodes can lead to improvement
of computational times after addition of averages on edges.

5. Conclusion

We have presented a comparison of two ways for generating the coarse space in the
BDDC method. We can conclude that while adding averages over edges and faces

Fig. 1: Turbine nozzle, division into 16 subdomains.
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Fig. 2: Turbine nozzle, number of iterations in dependence on number of corners, 16 and
32 subdomains.
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Fig. 3: Turbine nozzle, condition number in dependence on number of corners, 16 and
32 subdomains.
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Fig. 4: Turbine nozzle, wall clock time in dependence on number of corners, 16 and
32 subdomains.

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 98 78 41 36
cond. number est. 2 933 1 546 164 142

factorization (sec) 0.5 0.6 0.6 0.8
pcg iter (sec) 4.6 3.7 1.9 1.9

total (sec) 5.3 4.5 2.8 2.9

Tab. 1: Turbine nozzle, 16 subdomains, 30 corners, adding averages.

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 29 26 26 23
cond. number est. 36 23 25 13

factorization (sec) 1.2 1.1 1.5 1.8
pcg iter (sec) 1.9 1.6 1.7 1.8

total (sec) 3.6 2.9 3.5 3.8

Tab. 2: Turbine nozzle, 16 subdomains, 280 corners, adding averages.
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is often applied in literature, addition of more corners might be also contributive
and the best results are likely to be obtained by combination of both approaches.
According to our observations, there is an optimal number of corner nodes, with
a steep decrease of number of iterations followed by the lowest computational time.
Constraints on averages over faces might be too expensive compared to averages over
edges. These observations advocate the adaptive approach for selecting constraints
described in [6].
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solver and stress computation in a hip joint replacement. Submitted to Math.
Comp. Simul., 2008.

184


