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Abstract: There are two grounds the spline theory stems from – the algebraic
one (where splines are understood as piecewise smooth functions satisfying
some continuity conditions) and the variational one (where splines are obtained
via minimization of some quadratic functionals with constraints). We use the
general variational approach called smooth interpolation introduced by Talmi
and Gilat and show that it covers not only the cubic spline and its 2D and
3D analogues but also the well known tension spline (called also spline with
tension). We present the results of a 1D numerical example that characterize
some properties of the tension spline.

Keywords: data interpolation, smooth interpolation, spline interpolation,
tension spline, Fourier series, Fourier transform

MSC: 65D05, 65D07, 41A05, 41A63, 42A38

1. Introduction

The minimum curvature approach to interpolation, which produces e.g. cubic
splines, usually provides a visually nice smooth curve or surface. However, in some
cases the method can create artificial oscillations. A remedy proposed by Schwei-
kert [4] is known as tension spline. The functional minimized includes the first
derivative term in addition to the second derivative term.

The smooth approximation [8] is an approach to data interpolating or data fitting
that employs the variational formulation of the problem in a normed space with con-
straints representing the approximation conditions. The cubic spline interpolation
in 1D is also known to be the approximation of this kind.

For the cubic spline, the objective is to minimize the L2 norm of the second
derivative of the approximating function. A more complex criterion then is to mini-
mize, with some weights chosen, the L2 norms of several (or possibly all) derivatives
of a sufficiently smooth approximating function. In the paper, we are concerned
with the tension spline constructed by means of the smooth approximation theory
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(cf. also [3]), i.e. with the exact interpolation of the data at nodes and, at the same
time, with the smoothness of the interpolating curve and its first derivative.

For the sake of simplicity, we are mostly concerned with the 1D case in the paper.
Assuming the approach of [8] and [5], we introduce the problem to be solved and
the tools necessary to this aim in Sec. 3. We also present the general existence
theorem for smooth interpolation proven in [5]. We use the basis system exp(ikx) of
exponential functions of pure imaginary argument for smooth interpolation problems
in Sec. 4. In Sec. 5 we investigate some properties of this basis suitable for preserving
the smoothness of the interpolation and for generating the tension spline in 1D, 2D,
and 3D. We also present a 1D numerical example and discuss it to illustrate some
properties of smooth interpolation in Sec. 6.

2. Problem of data interpolation

Basic notation and fundamental statements are presented, e.g., in [6]. Let
us have a finite number N of (complex, in general) measured (sampled) values
f1, f2, . . . , fN ∈ C obtained at N nodes X1, X2, . . . , XN ∈ Rn. The nodes are as-
sumed to be mutually distinct. We are usually interested also in the intermediate
values corresponding to other points in some domain. Assume that fj = f(Xj) are
measured values of some continuous function f while z is an approximating function
to be constructed. The dimension n of the independent variable can be arbitrary.

Definition 1 (Interpolation). The interpolating function (interpolant) z is con-
structed to fulfil the interpolation conditions

z(Xj) = fj, j = 1, . . . , N. (1)

Various additional conditions can be considered, e.g. minimization of some func-
tionals applied to z.

The problem of data interpolation does not have a unique solution. The prop-
erty (1) of the interpolating function is uniquely formulated by mathematical means
but there are also requirements on the subjective perception of the behavior of the
approximating curve or surface between nodes that can hardly be formalized.

The general problem of smooth approximation (smooth curve fitting, data smooth-
ing), where the interpolation condition (1) is not applied, is treated in more detail
e.g. in [5], [8].

For the sake of simplicity we now put n = 1 and assume that X1, X2, . . . , XN ∈ Ω,
where either Ω = [a, b] is a finite interval or Ω = (−∞,∞). We will turn back to
general n ≥ 1 in Sec. 5.

3. Smooth interpolation

We introduce an inner product space to formulate the additional constraints in
the problem of smooth approximation [6], [8]. Let W̃ be a linear vector space of
complex valued functions g continuous together with their derivatives of all orders
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on the interval Ω. Let {Bl}∞l=0 be a sequence of nonnegative numbers and L the

smallest nonnegative integer such that BL > 0 while Bl = 0 for l < L. For g, h ∈ W̃ ,
put

(g, h)L =
∞∑
l=0

Bl

∫
Ω

g(l)(x)[h(l)(x)]∗ dx, (2)

|g|2L =
∞∑
l=0

Bl

∫
Ω

|g(l)(x)|2 dx, (3)

where ∗ denotes the complex conjugate.
If L = 0 (i.e. B0 > 0), consider functions g ∈ W̃ such that the value of |g|0

exists and is finite. Then (g, h)0 = (g, h) has the properties of inner product and the

expression |g|0 = ‖g‖ is norm in a normed space W0 = W̃ .

Let L > 0. Consider again functions g ∈ W̃ such that the value of |g|L exists and

is finite. Let PL−1 ⊂ W̃ be the subspace whose basis {ϕp} consists of monomials

ϕp(x) = xp−1, p = 1, . . . , L.

Then (ϕp, ϕq)L = 0 and |ϕp|L = 0 for p, q = 1, . . . , L. Using (2) and (3), we con-

struct the quotient space W̃/PL−1 whose zero class is the subspace PL−1. Finally,
considering (·, ·)L and | · |L in every equivalence class, we see that they represent the

inner product and norm in a normed space WL = W̃/PL−1 [6].
WL is the normed space where we minimize functionals and measure the smooth-

ness of the interpolation. For an arbitrary L ≥ 0, choose a basis system of functions
{gk} ⊂ WL, k = 1, 2, . . . , that is complete and orthogonal (in the inner product
in WL), i.e., (gk, gm)L = 0 for k 6= m, (gk, gk)L = |gk|2L > 0. If L > 0 then it is,
moreover, (ϕp, gk)L = 0 for p = 1, . . . , L, k = 1, 2, . . . . The set {ϕp} is empty for
L = 0.

Definition 2 (Smooth data interpolation). The problem of smooth data interpola-
tion [8] consists in finding the coefficients Ak and ap of the interpolant

z(x) =
∞∑
k=1

Akgk(x) +
L∑
p=1

apϕp(x) (4)

such that
z(Xj) = fj, j = 1, . . . , N, (5)

and
the quantity |z|2L attains its minimum. (6)

Apparently, the infinite sum in (4) is inconvenient for practical computation.
Therefore, we introduce the generating function

RL(x, y) =
∞∑
k=1

gk(x)g∗k(y)

|gk|2L
. (7)
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We state in Theorem 1, which follows, that a finite linear combination of the values of
the generating function RL at particular nodes is used for the practical interpolation
instead of the infinite linear combination in (4). Further put

R = [RL(Xi, Xj)], i, j = 1, . . . , N,

where R is an N×N square Hermitian matrix, and if L > 0 then introduce an N×L
matrix

Φ = [ϕp(Xj)], j = 1, . . . , N, p = 1, . . . , L.

Theorem 1. Let Xi 6= Xj for all i 6= j. Assume that the generating function (7)
converges for all x, y ∈ Ω. If L > 0 let rank Φ = L. Then the problem of smooth
interpolation (4) to (6) has the unique solution

z(x) =
N∑
j=1

λjRL(x,Xj) +
L∑
p=1

apϕp(x), (8)

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution
of a nonsingular system of N + L linear algebraic equations.

Proof. The proof is given in [5].

4. A particular basis function system

Recall that we have put n = 1. Let the function f to be approximated be
2π-periodic in [0, 2π]. We choose exponential functions of pure imaginary argument
for the periodic basis system {gk} in WL. The following theorem shows important
properties of the system.

Theorem 2. Let there be an integer s, s ≥ L, such that Bl = 0 for all l > s in WL.
The system of periodic exponential functions of pure imaginary argument

gk(x) = exp(−ikx), x ∈ [0, 2π], k = 0,±1,±2, . . . , (9)

is complete and orthogonal in WL.

Proof. The proof is given in [6].

The range of k implies a minor change in the notation introduced above. For the
basis system (9), notice that the generating function

RL(x, y) =
∞∑

k=−∞

gk(x)g∗k(y)

|gk|2L
=

∞∑
k=−∞

exp(−ik(x− y))

|gk|2L
(10)

is the Fourier series in L2(0, 2π) with the coefficients |gk|−2
L , where

|gk|2L = 2π
∞∑
l=L

Blk
2l (11)

according to (3).
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Let now the function f to be approximated be nonperiodic on (−∞,∞) and
f (l)(±∞) = 0 for all l ≥ 0. Let us define the generating function RL(x, y) as the
Fourier transform of the function |gk|−2

L of continuous variable k,

RL(x, y) =

∫ ∞
−∞

exp(−ik(x− y))

|gk|2L
dk, (12)

if the integral exists. Using the effect of transition from the Fourier series (10)
with the coefficients |gk|−2

L to the Fourier transform (12) of the function |gk|−2
L of

continuous variable k (cf., e.g., [6]), we have transformed the basis functions, enriched
their spectrum, and released the requirement of periodicity of f . Moreover, if the
integral (12) does not exist in the usual sense, in many instances we can calculate
RL(x, y) as the Fourier transform F of the generalized function |gk|−2

L of k.

5. Tension spline

To finish the definition of the inner product and norm (2), (3) in a particular
space WL we now choose a particular sequence {Bl} and set, therefore, the mini-
mization properties of the smooth interpolant. Let us thus put (cf. [3])

Bl = 0 for all l with the exception of B1 = α2, α > 0, and B2 = 1. (13)

It means that we have L = 1 and minimize the L2 norm of the first derivative (char-
acterizing oscillations) multiplied by α2 plus the L2 norm of the second derivative
(characterizing the curvature) of the interpolant (4) in the form (8), i.e.

z(x) =
N∑
j=1

λjR1(x,Xj) + a1. (14)

We get
|gk|21 = 2π(α2k2 + k4)

from (11). Let r = |x− y|. We arrive at

R1(x, y) = F
(

1

2πk2(α2 + k2)

)
=

1

2π
F
(

1

α2k2
− 1

α2(k2 + α2)

)
= − 1

2α3
(αr + exp(−αr)), (15)

where F denotes the Fourier transform of a generalized function (see [2], p. 375,
formula 14 and p. 377, formula 29; and [1], formula 8.469.3), cf. [7]. We see that this
version of smooth approximation is equivalent to the tension spline interpolation [4]
but introduced in a way different from [3].

For dimension n > 1, l is a multiindex, k, x, y are vectors, and the formula (14)
remains the same.
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If n = 2 then |gk|21 = 4π2(α2(k2
1 + k2

2) + (k2
1 + k2

2)2) and we arrive at

R1(x, y) = F
(

1

4π2(α2(k2
1 + k2

2) + (k2
1 + k2

2)2)

)
= − 1

2πα2
(ln(1

2
αr)−K0(αr) + C),

where C is a constant that can be included into a1 in (14) and K0 is the modified
Bessel function of the second kind (see [2], p. 382, formula 13 and p. 380, formula 5).

Moreover, if n = 3 then |gk|21 = 8π3(α2(k2
1 +k2

2 +k2
3)+(k2

1 +k2
2 +k2

3)2). We finally
have

R1(x, y) = F
(

1

8π3(α2(k2
1 + k2

2 + k2
3) + (k2

1 + k2
2 + k2

3)2)

)
=

1

4πα2

1− exp(−αr)
r

(see [2], p. 382, formula 13 and p. 380, formula 1).
At r = 0, the above functions R1(x, y) are defined as a limit for r → 0.
There are further practical examples of smooth interpolation where the inte-

gral (12) that defines the generating function can be calculated with the help of
the Fourier transform. It is easy to show that one of them is the 1D cubic spline
interpolation and its analogues in 2D and 3D [6].

6. Computational comparison

We present results of a simple numerical experiment with the tension spline for
n = 1. We employ the complete and orthogonal system (9) and the sequence (13)
to introduce the space W1. We use the interpolant (14), where R1 is given by (15).
The function to be interpolated is

f(x) = 8− 2

1 + 16x2
. (16)

Apparently, it has “almost a negative pole” at x = 0. The tension spline interpolation
of the function (16) has been constructed in several equidistant grids of N nodes
on [−1, 1] and for several values of α2 including also α2 = 0, i.e. the cubic spline.

Some of the results of interpolation are in Fig. 1. We put N = 9 and compare
tension splines with α2 = 0, α2 = 1 000, and α2 = 10 000. The interpolants are in
the upper part of the figure, their first derivatives in the lower part along the x axis.

We see that the tension splines do not differ substantially from each other but
their derivatives are very unlike. The derivative of the cubic spline is a smooth
function while the derivative of the tension spline with α2 = 10 000 is similar to
a piecewise constant function with smooth changes between the constant levels. This
corresponds to the behavior of the tension spline if examined in a different scale: it
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Figure 1: N = 9. The horizontal axis: independent variable, the vertical axis:
interpolant (in the upper part of the figure) and its derivative (in the lower part).
Cubic spline (tension α2 = 0): red line, tension spline (α2 = 1 000): green line,
tension spline (α2 = 10 000): blue line.

resembles a piecewise linear curve but it is smooth, not sharp-cornered also at nodes,
i.e. its derivative is continuous.

A proper choice of the parameter α2 can provide a compromise interpolation
solution with both tension spline and its derivative so smooth that they give a good,
pleasing subjective impression.

7. Conclusion

We have shown that the generating function for the tension spline interpolation
can be obtained by means of the Fourier transform of generalized functions. To
this end we have employed the integral definition (12) of the generating function
and some known formulae for the Fourier transform. The Fourier transform can be
successfully used to determine the generating function also in several other cases
including n = 2 and n = 3. Moreover, the same approach can be applied to smooth
approximation where no interpolation conditions (1) are prescribed. The example in
Fig. 1 is a very simple illustration of the 1D smooth interpolation case.
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