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Abstract: In this paper the fluid-structure interaction problem is studied on
a simplified model of the human vocal fold. The problem is mathematically
described and the arbitrary Lagrangian-Eulerian method is applied in order to
treat the time dependent computational domain. The viscous incompressible
fluid flow and linear elasticity models are considered. The fluid flow and the
motion of elastic body is approximated with the aid of finite element method.
An attention is paid to the applied stabilization technique. The whole algo-
rithm is implemented in an in-house developed solver. Numerical results are
presented and the influence of different inlet boundary conditions is discussed.
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1. Introduction

The flow induced vibration of elastic structure or more generally fluid-structure
interaction problems (FSI) are important in many technical applications, see e.g. [3].
This contribution focuses on the simulation of human vocal folds vibration, see e.g. [5].
There are many numerical methods concerned with the solution of the fluid-structure
interaction and also many approaches how to deal with the coupled problem. Basi-
cally these can be characterized as either the monolithic or partitioned scheme, see
for example [7]. Monolithic solvers are usually more robust, but more computer time
consuming. The partitioned scheme decouples the solution of both subproblems, but
on the other hand it often requires subiterations.

This paper focuses on the application of the partitioned scheme for finite ele-
ment method (FEM). To avoid possible instabilities of FEM due to high Reynolds
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number flows the streamline upwind/Petrov-Galerkin (SUPG) method, pressure-
stabilization/Petrov-Galerkin (PSPG) method together with ‘div-div’ stabilization
are applied.

The structure of the paper is as follows. First the mathematical model consisting
of the Navier-Stokes and linear elasticity equations is presented and the arbitrary
Lagrangian-Eulerian method (ALE) is used. Further the flow problem is discretized
in space by the stabilized finite element method. The numerical results of several
test cases are shown.

2. Mathematical model

For the sake of simplicity the FSI problem is solved in 2D. The geometry of the
problem topology is shown in Figure 1. The elastic structure (the vocal fold) is
represented by the domain Ωs. It is not necessary to distinguish between the shape
at an arbitrary time t and the reference shape of the domain because of the adopted
Lagrange approach for the deformation description.

The domain Ωf
ref denotes the reference fluid domain, e.g. the domain at the

time instant t = 0 with the common interface ΓWref
= ΓW0 between the fluid and

structure domains. The fluid motion is solved with the ALE method, which enables
the change of the reference domain Ωf

ref to the domain Ωf
t at any time instant t.

Figure 1: Geometry of vocal folds model with boundaries marked before (left) and
after (right) deformation.

Elastic body. The deformation of the elastic body Ωs
ref depends on establishing of

dynamic equilibrium between the inertia forces and the applied surface and volume
forces. This equilibrium is described by the partial differential equation, see e.g. [2]

ρs
∂2ui
∂t2
−
∂τ sij
∂xj

= f s
i in Ωs × (0,T), (1)

where u(X, t) = (u1, u2) denotes the displacement vector, f s
i is the component of

volume force, ρs is the structure density and τij are the components of the Cauchy
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stress tensor. These components are expressed by the generalized Hooke’s law. As-
suming the isotropic material and small displacements the components of the stress
tensor τ s = (τ sij) are given by

τ sij = λs(div u) δij + 2µsesij(u), (2)

where δij is Kronecker’s delta, esjk(u) = 1
2

(
∂uj

∂xk
+ ∂uk

∂xj

)
is the strain tensor, and

λs, µs are Lame’s constants related to the Young modulus of elasticity and Poisson’s
ratio. The partial differential equation (1) is enclosed with the following initial and
boundary conditions

a) u(X, 0) = u0(X), for X ∈ Ωs,

b)
∂u

∂t
(X, 0) = u1(X) for X ∈ Ωs, (3)

c) u(X, t) = uDir(X, t) for X ∈ Γs
Dir, t ∈ (0,T),

d) τ sij(X, t)n
s
j(X) = qsi (X, t), for X ∈ Γs

Wref
, t ∈ (0,T),

where the ΓWref
,Γs

Dir are mutually disjoint parts of the boundary ∂Ω = ΓWref
∪ Γs

Dir

(see Figure 1) and ns
j(X) are components of the unit outer normal to ΓWref

.

ALE method. The ALE method uses a diffeomorphism At of the reference (un-
deformed) domain Ωf

ref onto the time-dependent domain Ωf
t at any time instant

t ∈ (0,T). This mapping At is also required to satisfy

∂At

∂t
∈ C(Ωf

ref ), At(∂Ωf
ref ) = ∂Ωf

t , t ∈ (0,T). (4)

The ALE domain velocity is then defined by

wD(x, t) =
∂

∂t
At(X), t ∈ (0,T), x = At(X) ∈ Ωf

t . (5)

Afterwards ALE derivative is introduced as the time derivative with respect to a fixed
point X ∈ Ωf

ref . The ALE derivative satisfies

DA

Dt
f(x, t) =

df(At(X), t)

dt
=
∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (6)

For more details see the article [9]. The practical construction of ALE mapping is
described in [5] or [10].

Fluid motion. The fluid is assumed to be viscous and incompressible in the time
dependent domain Ωf

t . Its motion is modelled by the Navier-Stokes equations in the
ALE form

DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = 0, div v = 0 in Ωf

t , (7)
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where v(x, t) denotes the fluid velocity, p is the kinematic pressure and νf is the
kinematic fluid viscosity, see [5].

The problem (7) is equipped with an initial and the following boundary conditions

a) v(x, t) = wD(x, t) for x ∈ Γf
Dir ∪ ΓWt , t ∈ (0,T),

b) v(x, t) = vDir(x, t) for x ∈ Γf
In, t ∈ (0,T), (8)

c) p(x, t)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )− for x ∈ Γf

Out, t ∈ (0,T),

where nf is unit outer normal to boundary ∂Ωf
t . The last condition (8 c) is the

modified do-nothing boundary condition according to [1], which suppresses possible
backward inlet through the outlet boundary.

Coupling. The solutions of problems (1) and (7) depend on each other via the
boundary conditions on the common interface. Moreover, the location of the inter-
face ΓWt at time t is not a priori known and is dependent on the establishing force
equilibrium between the aerodynamic and the elastic forces. It is implicitly given by
the deformation u as

ΓWt =
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
. (9)

First the so called dynamic boundary condition expressing effect of aerodynamic
force qs = (qs1, q

s
2) is prescribed at the interface for the structure, where

qsi (X, t) = −
2∑

j=1

ρf (−pδij + νf (
∂vi

∂xj
+
∂vj

∂xi
))nf

j

∣∣∣∣
x=X+u(X,t)

. (10)

Further, the coupling of the problem is characterized by the so called kinematic
boundary condition (8a), where the domain velocity wD is equal to the structure
velocity at the interface ΓWt . In order to solve the problem, the strong coupling
algorithm is implemented, see e.g. [5].

3. Discretization

Both parts of the FSI problem were discretized in space by the finite element
method. For the time discretization the equidistant time step ∆t = T

N
, N >> 1

was used. The partition of the time interval is then given by tn = n∆t. The
functions u,v, p are approximated at time instant tn by un,vn, pn.

Elastic body. First, equation (1) is reformulated in a weak sense, the generalized
Hooke’s law (2) and the Green theorem is applied, which leads to(

ρs
∂2uj
∂t2

, ϕj

)
Ωs

+
(
λs(div u) δij + 2µsesij(u), esij(ϕ)

)
Ωs=

(
f s
j , ϕj

)
Ωs+

(
qsj , ϕj

)
Γs
Neu

. (11)
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This equation needs to be satisfied for all ϕ = (ϕ1, ϕ2) ∈ V × V ,
where V = {φ ∈ H1(Ωs)|φ = 0 on Γs

Dir} and H1(Ω) is the Sobolev’s space. The no-
tation (·, ·)M denotes scalar product in the space L2(M). The numerical solution uh

is now sought in the finite dimensional FE space, i.e. it can be expressed as the lin-
ear combination of basis functions uh(x, t) =

∑Nh

i=1 αi(t)ϕi(x), where the coefficients
α(t) = (αi(t)) are unknowns. Then fulfilment of equation (11) leads to the system
of ordinary differential equations of the second order

Mα̈(t) + Cα̇(t) + Kα(t) = b(t), (12)

where the matrix C was added as a model of the proportional structural damping,
see e.g. [5]. The vector b(t) has components bj(t) =

(
f s,ϕj

)
Ωs +

(
qs,ϕj

)
Γs
Neu

and

the elements of matrices M = (mij),K = (kij) are given by

mij =

(
ρs
∂2ϕi

∂t2
,ϕj

)
Ωs

, kij =
(
λs(div ϕi) δrl + 2µsesrl(ϕi), e

s
rl(ϕj)

)
Ωs . (13)

The proportional damping matrix is chosen as C = ε1M + ε2K with appropriate
choice of parameters ε1, ε2. This system is numerically approximated by the Newmark
method, see e.g. [5].

Fluid motion. Equation (7) is first discretized in time by the backward differ-
entiation formula of the second order (BDF2), see [10]. Furthermore, the non-
linear convective term is linearized using the value from the previous time step,
(v · ∇)v|tn+1

≈ (vn · ∇)vn+1. Afterwards the weak formulation is derived in the

standard way, where on the outflow part of the boundary Γf
Out one extra application

of Green theorem to the convective term according to [1] is performed. The func-
tional spaces X = X ×X, X = H1(Ωf ) and M = L2(Ωf ) are introduced. Then the
solution of problem V = (v, p) = (vn+1, pn+1) is sought in the space X ×M such
that v fulfills conditions (8 a) b) ) and moreover

a(V,Φ) = f(Φ) for all Φ = (ϕ, q) ∈W × L2(Ωf ), (14)

where W = W×W , W = {φ ∈ X|φ = 0 on Γf
Dir∪Γf

In∪Γf
Wt
}. The bilinear form a(·, ·)

and functional f(·) are defined as

a(V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+
1

2
((vn − 2wD) · ∇)v,ϕ)Ωf − 1

2
((vn · ∇)ϕ,v)Ωf +

+
1

2

(
(vn · nf )+v,ϕ

)
Γf
Out

+ νf (∇v,∇ϕ)Ωf − (p, div ϕ)Ωf + (q, divv)Ωf , (15)

f(Φ) =

(
4vn − vn−1

2∆t
,ϕ

)
Ωf

,

where for a given time step tn+1 we set vi(x) = vi(Ati(A
−1
tn+1

(x))).
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Stabilization of FEM. The instability arises primarily from unresolved high ve-
locity gradients regions, which can be characterized by high values of local Reynold
number ReK . In order to overcome this phenomenon the streamline-upwind/Petrov-
Galerkin method (SUPG) and pressure-stabilization method (PSPG) together with
‘div-div stabilization’ were applied, see [6]. The fully stabilized scheme is intro-
duced with the additional terms added to equation (14) with shortened notation
ζ := ((vn −wD) · ∇)ϕ+∇q

L(V,Φ) =
∑
K∈Th

δK

(
3v

2∆t
+ ((vn −wD) · ∇)v +∇p− ν∆v, ζ

)
K

, (16)

F(Φ) =
∑
K∈Th

δK

(
4vn − vn−1

2∆t
, ζ

)
K

, P(V,Φ) =
∑
K∈Th

τK (∇ · v,∇ ·ϕ)K ,

where parameters δK and τK are locally defined using local element length hK as

δK =
h2
K

τK
, τK = ν

(
1 +ReK +

h2
K

ν∆t

)
, ReK =

hK ||vn −wD||K
2ν

. (17)

The stabilized problem now reads: find V = (v, p) ∈ X × M such that v fulfills
conditions (8a)b)) and

a(V,Φ) + L(V,Φ) + P(V,Φ) = f(Φ) + F(Φ), (18)

for all Φ = (ϕ, q) ∈W × L2(Ωf ). The numerical simulations were done using LBB
stable P1-bubble/P1 elements. The solution of system (18) was performed by the
mathematical library UMFPACK, see [4].

4. Numerical simulations

Numerical tests were performed on computational domain with vocal fold
model M5 described in [8]. The height of the vocal fold was set to 6 mm.

Flow solver. First, the fluid flow through the fixed computational domain without
interaction was computed. The inlet velocity was set to fully developed flow with
maximum 1 m/s. The viscosity was set to νf = 1.47 · 10−5 m/s2 and the time step
∆t = 10−4 s was chosen. Figure 2 shows a distribution of the flow velocity magnitude
and pressure and illustrates the typical jet and vortex structures. Figure 3 shows
the pressure difference between the inlet and the outlet computed both with (p stab)
and without stabilization (p unstab). For this computation it was possible to use
also the unstabilized FEM, the results are very similar.

FSI test. Subsequently, the coupled fluid-structure interaction problem in the
same domain was solved. The vocal fold consists of two layers: The thin layer around
the interface represents epithelium with Young modulus of elasticity and Poisson’s
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Figure 2: Flow field velocity together with pressure isolines are shown at the time
instant t = 0.3105 s for the case of the unstabilized FEM computation.

Figure 3: Pressure difference between the mean value on the inlet and the outlet.

ratio Es = 100 kPa and σ = 0.4, respectively. The rest of the vocal fold (muscle) is
modelled with Es = 12 kPa, σ = 0.4. The densities were set as ρs = 1000 kg/m3,
ρf = 1.185 kg/m3 and damping parameters as ε1 = 5.0 s−1, ε2 = 2.0 · 10−5 s. The
eigenfrequencies and the eigenmodes were determined by the modal analysis. The
first two are shown in Figure 4. They are the most important because the first mode
represents motion dominantly in x-direction, whereas the second in the y-direction.
The higher eigenfrequencies have a more complex shape of eigenmodes.

The same problem was solved either with the prescribed inlet velocity (parabolic
profile with maximum 3 m/s - BC velocity) or with the prescribed correspondent
pressure difference (272.55 Pa - BC pressure). The interaction between elastic body
and fluid flow was enabled after 0.1 s of computation, when the flow field was already
fully developed. The numerically simulated displacements of one chosen node at the
top of the bottom vocal fold are plotted in Figures 5 and 6 on the left and the Fourier
transforms of the time signal are shown on the right.

After a transient part of the simulation, that corresponds to a sudden loading
of the vocal folds by aerodynamic forces at the start of the interaction, the vocal
folds vibrate with similar amplitudes in both cases around a new equilibrium point.
The Fourier transform indicates the excitation of the first two eigenmodes. The first
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Figure 4: First and second eigenmode of vocal fold vibration with the correspondent
eigenfrequencies.

Figure 5: Simulated displacements of the point from the top of vocal fold in
x-direction in time domain (left) and the normalized Fourier transformation of the
signals (right). Time signal is plotted from the start of computation with the inter-
action.

Figure 6: Simulated displacements of the point from the top of vocal fold in
y-direction in time domain (left) and the normalized Fourier transformation of the
signals (right). Time signal is plotted from the start of computation with the inter-
action.

eigenmode with the eigenfrequency of 108.7 Hz dominates in the spectrum for the
x-component of the displacement (see Fig. 5). The frequency of the first eigenmode
is also dominant for the y-component of the displacement but the second eigenmode
with eigenfrequency 220.9 Hz is also excited noticeably (see Fig. 6). In the case of
BC velocity the excitation of the second mode is higher in comparison with the case
of BC pressure. This behaviour can be caused by different pressure distribution
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Figure 7: Velocity profile along the inlet at time instants t = 0.1 + j ∗ ∆t [s],
j ∈ {1, 4, 9}. Units are m/s and x-axis denotes distance from bottom of channel.

Figure 8: Kinematic pressure p along the inlet at time instants t = 0.1 + j ∗∆t [s],
j ∈ {1, 4, 9}. Units on the y-axis are in Pa ·m3/kg and the x-axis denotes the
distance from the bottom of the channel.

inside the fluid domain which is the dominant part of the aerodynamic force. If the
pressure difference is prescribed, then the real pressure drop between the inlet and
the outlet remains almost constant while inlet velocity slightly varies. On the other
hand if velocity profile is prescribed, then the inlet velocity is fixed and pressure along
the channel considerably varies. This is presented in Figures 7 and 8, where time
instants were chosen as: 1.0005 s – start of the vocal folds opening, 1.0020 s – point
of return from maximal displacement, 1.0045 s – channel closure at the end of the
vibration cycle.

5. Conclusion

The article presents the mathematical description and derivation of numerical
scheme for solution of FSI by FEM. Special attention is paid to the stabilization
of FEM by additional terms introduced in weak formulation of the problem. These
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SUPG, PSPG and ‘div-div’ stabilization methods enable to overcome numerical in-
stabilities and to obtain more accurate results. The simulation of flow-induced vi-
bration of vocal folds computed by an in-house developed program is shown and the
influence of the boundary conditions is studied.
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and Biomedical Applications, pp. 312–393. Birkhauser, 2014.

[6] Gelhard, T., Lube, G., Olshanskii, M. A., and Starcke, J. H.: Stabilized finite
element schemes with LBB-stable elements for incompressible flows. J. Comput.
Appl. Math. 177 (2005), 243–267.

[7] Richter, T.: Numerical methods for fluid-structure interaction problems. Ph.D.
thesis, University of Heidelberg, Germany, 2010.

[8] Scherer, R. C. et al.: Intraglottal pressure profiles for a symmetric and oblique
glottis with a divergence angle of 10 degrees. Journal of the Acoustical Society
of America 109 (2001), 1616–1630.

[9] Takashi, N. and Hughes, T. J. R.: An arbitrary Lagrangian-Eulerian finite ele-
ment method for interaction of fluid and a rigid body. Comput. Methods Appl.
Mech. Engrg. 95 (1992), 115–138.

[10] Valášek, J., Sváček, P., and Horáček, J.: On numerical approximation of fluid-
structure interactions of air flow with a model of vocal folds. In: D. Šimurda
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