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Abstract: Intrinsic equations represent promising approach for the descrip-
tion of rotor blade dynamics. They are the system of non-linear partial differ-
ential equations. Stability of numeric solution by the finite difference method
is described. The stability is studied for various numerical schemes with differ-
ent methods for the computation of spatial derivatives from time level n + 0.5
(i.e., mean values of old and new time step) to n + 1 (i.e., only from new
time step). Stable solution was obtained only for schemes between n + 0.55
and n + 0.9. This does not correspond to the assumption that more implicit
schemes have more numeric stability.
Keywords: finite difference method, intrinsic equations for beams, numeric
stability
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1. Introduction

Dynamics of beams represents very important branch in engineering praxis. Lin-
ear model is not sufficient for some types of problems, e.g. dynamics of some aircraft
wings and helicopter rotor blades. Nonlinearity caused by big deflections must be
considered in these cases. This led to the development of nonlinear beam mod-
els. One of them represented by intrinsic equations was presented by Hodges in [1]
and [2]. It was later used in the field of beam dynamics. Finite element simulation
of curved composite beams is presented in [3], Galerkin approach in [4]. Sotoudeh
and Hodges used this model for the dynamics of helicopter blades in [5] and [6].
Using intrinsic equations has big potential for the improvement in the prediction of
rotor blade dynamics. It leads to the solution of the non-linear partial differential
equations. Numerical approach is chosen due to the complexity of the equations
and often complicated blade geometry. Published results shows that there could
exist problem with numerical stability, but there is no research work in this domain
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known to the author. This paper tries to cover some basics aspects of this problem
and describes numerical stability of intrinsic equations solved by the method of finite
differences.

2. Methods

2.1. System of equations

System of nonlinear partial differential equations describes dynamics of beams
with large displacement and small local deformation (linear elastic material model
is used). It is based on the beam model presented in [2] and [5]. Each variable is
vector with three components. Coordinate system is Cartesian. x1 axis is identical
with beam axis, x2 and x3 axes defines beam cross section. Equations are derived
for local coordinate system connected with beam centerline. This simplifies the
equations. However, computation of displacement is more complicated (for details
see [2] and [5]). System of differential equations consists of momentum conservation
law (for both the linear momentum P and the angular momentum H):

∂P

∂t
=

∂F

∂x1

+ K̃F + f − Ω̃P, (1)

∂H

∂t
=

∂M

∂x1

+ K̃M + (ẽ1 + γ̃)F + m− Ω̃H − Ṽ P. (2)

Kinematic relations have to be added to the system:

∂γ

∂t
=

∂V

∂x1

+ K̃V + (ẽ1 + γ̃)Ω, (3)

∂κ

∂t
=

∂Ω

∂x1

+ K̃Ω. (4)

Nomenclature is described in Table 1.
Matrix K̃ is defined by the elements of the vector K = [K1 K2 K3]

T in following
way (according to [2])

K̃ =

 0 −K3 K2

K3 0 −K1

−K2 K1 0

 . (5)

Matrices Ω̃, ẽ1, γ̃ and Ṽ are defined in a similar way. Elements of vector K =
[K1K2K3]

T are actual beam twist K1, actual beam curvature in x2 direction K2 and
actual beam curvature in the x3 direction K3. It consists undeformed beam twist
and curvature k and elastic twist and curvature κ

K = k + κ. (6)

Constitutive relations close the system. It is assumed that beam elastic axis is
identical with the axis x1 and the center of gravity of any cross-section is on the x1
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e1 Vector [1 0 0]T

f Vector of distributed applied force
F Vector of internal force
H Vector of cross-sectional angular momentum
k Vector of undeformed beam curvature and twist
K Vector of deformed beam curvature and twist
m Vector of distributed applied moment
M Vector of internal moment
P Vector of cross-sectional linear momentum
V Vector of velocity
γ Vector of generalized strain
κ Vector of elastic curvature and twist
Ω Vector of cross-sectional angular velocity

Table 1: Nomenclature.

axis. Then the transformation between beam elastic deformation γ and κ can be
simplified to the form

γ11

2γ12

2γ13

κ1

κ2

κ3


=



1
EA

0 0 0 0 0
0 1

GA2
0 0 0 0

0 0 1
GA3

0 0 0

0 0 0 1
GJ

0 0
0 0 0 0 1

EI2
0

0 0 0 0 0 1
EI3





F1

F2

F3

M1

M2

M3


, (7)

where EA is beam tensional stiffness, GA2 and GA3 are beam shear stiffnesses, GJ
is torsional stiffness, EA2 and EA3 are beam bending stiffnesses. Relation between
momentum and velocity (both linear and angular) can be written as

P1

P2

P3

H1

H2

H3


=


µ 0 0 0 0 0
0 µ 0 0 0 0
0 0 µ 0 0 0
0 0 0 i2 + i3 0 0
0 0 0 0 i2 0
0 0 0 0 0 i3





V1

V2

V3

Ω1

Ω2

Ω3


, (8)

where µ is beam mass per unit length, i2 and i3 are cross-sectional mass moments of
inertia.

2.2. Boundary conditions

Usual boundary conditions for the simulation of blade or wing dynamics consists
of 12 values, i.e., 4 vector variables. Internal force F and moment M equals to 0 at

73



the free end, i.e., wing or blade tip. Velocity V and angular velocity Ω is defined at
wing or blade root. This is the standard problem definition for blade dynamics.
There is also possibility to simulate beam with both free ends (e.g. wing in flight).
Force F and moment M equals then to zero at both wing (beam) ends. Wing
movement is then the result of the simulation.

2.3. Initial values

Definition of initial values represents specific problem due to used set of variables.
Velocity V , angular velocity Ω and beam deformation γ and κ have to be defined for
the whole beam. There are in fact two possibilities:

• Begin the simulation from the undeformed beam state, i.e., γ = 0 and κ = 0.
This causes that transient process occurs during the first phase of the simula-
tion in the time domain. This is not always acceptable.

• Begin the simulation from static (means time-independent in this case) solu-
tion. This requires extra step during which equations (1), (2), (3) and (4)
are solved for ∂/∂t = 0, i.e., as ordinary differential equations. This prevents
transient process and give more precise results from the beginning of the sim-
ulation.

2.4. Computation of beam deflection

Price for the simplicity of intrinsic equations is missing node displacement u and
node position r among equation variables. So displacement u have to be computed
separately after the numerical solution of the equations (1) and (2). Node position
vector of the deformed beam r + u can be computed by the means of following
differential equation (according to [5]):

∂(r + u)

∂x1

= CiB(e1 + γ), (9)

where r is position vector of given point on the beam centerline. Transformation
matrix CiB is the inversion of the matrix CBi which can be computed from the
following equation

∂CBi

∂x1

= −(k̃ + κ̃)CiB. (10)

Beam deflection u is computed by numerical integration of (10) and (9) starting from
the fixed end of the beam. Initial condition is represented by defined position of the
first node (for studied case r = [0 0 0]T , however, r 6= 0 occurs in many technical
applications).

3. Numerical solution

3.1. Discretization scheme

Finite difference method is used. Beam is divided to elements with equal length.
More complex schemes can be applied in order to simulate changes of beam properties
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Figure 1: Schematic of time and space discretization at single beam element.

with x1, bearings, complicated beam load etc.. Nodes are described by index i.
System of equations is solved in the middle of each element, i.e., at point with index
i+0.5 (see Fig. 1). Scheme of the variables between the nodes i and i+1 is presented
in Fig. 1. Equations are computed in the middle of each element, i.e., in the points
with spatial index i + 0.5. Linear approximation is then used to obtain values in the
nodes. The equations are solved in time domain by the means of finite difference
method. Newton’s method was used for the computation of the variables in the time
step n + 1 from the values in the time step n. Code for the solution was written in
the MATLAB environment.

3.2. Approximation of time derivatives

Standard forward discretization is used for the approximation of time derivatives

∂y

∂t
(x1 = Xi+0.5, t = Tn+θ) ≈

Y n+1
i+0.5 − Y n

i+0.5

dt
=

=
0.5Y n+1

i + 0.5Y n+1
i+1 − 0.5Y n

i − 0.5Y n
i+1

dt
.

(11)

3.3. Approximation of spatial derivatives

Central difference scheme is used so that approximation of spatial derivatives is
computed in various time levels from n (i.e., explicit scheme) to n+1 (i.e., standard
fully implicit scheme). Explicit scheme was tested, but the computation was numer-
ically unstable, so it was not used for detailed testing. So only implicit schemes were
used. Spatial derivative is computed both from the values in time step n and n + 1.
E.g. designation n + 0.6 means that the approximation of the spatial derivative is
computed from values Y n+θ = (1 − θ)Y n + θY n+1. Formula for the approximation
in the time level n + θ, where θ ∈ [0, 1], is defined by

∂y

∂x1

(x1 = Xi+0.5, t = Tn+θ) ≈
Y n+θ

i+1 − Y n+θ
i

dx1

=

θY n+1
i+1 + (1− θ)Y n

i+1 − θY n+1
i − (1− θ)Y n

i

dx1

.

(12)
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Figure 2: Relative error from the reference solution on the number of time steps per
period, 60 elements, spatial derivatives computed at time level n+0.7.

3.4. Time step

All results presented in this paper were computed with the time step equal to 1/64
of period, i.e., time of one revolution. This is based on the comparison of the beam
tip displacement with reference solution for various number of time steps per period
(see Fig. 2). Reference solution has 1024 time steps per period.

3.5. Number of elements

All results presented in this paper were computed on 60 equally long elements on
the beam, i.e., 61 nodes. This is based on the comparison of the beam tip displace-
ment with reference solution for various number elements (see Fig. 3). Reference
solution has 160 elements.

3.6. Problem definition

Simple rotating cantilever beam with harmonic loading in x3 direction is used
for the testing of numerical stability. Beam characteristics were based on the test
case from [5] and are presented in Table 2. Beam has no curvature and twist, i.e.,
k = [0 0 0]T for all elements.

Boundary conditions at the clamped end are defined by velocity V at the node
i = 1 equal to zero and angular velocity Ω equal to [0 0 Ωref ]

T . Boundary conditions
at free end are defined at the last node by force F and moment M equal to zero.
Beam is exposed to the harmonic load in the x3 direction equal to fA(cos(Ωref t)−1).
Value of fA is 104N.m−1.
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Figure 3: Relative error from the reference solution on the number of elements, 64
time steps per period, spatial derivatives computed at time level n+0.7.

Beam length 6 m
Mass per unit length µ 35.72 kg.m-1

Moment of inertia i2 0.0005 kg.m
Moment of inertia i3 0.0005 kg.m
Axial stiffness EA 1010 N.m2

Shear stiffness GA2 1010 N.m2

Shear stiffness GA3 1010 N.m2

Torsional stiffness GJ 1.144x106 N.m2

Bending stiffness (out of plane) EI2 1.132x108 N.m2

Bending stiffness (inplane) EI2 1.436x1010 N.m2

Rotational velocity Ωref 10 rad.s-1

Number of elements 20

Table 2: Beam data for the test case.

4. Results

Results are presented in the form of computed dependence of beam tip deflection
u3 on time. The correct solution corresponding to the beam with harmonic load is
harmonic response in the form of beam tip deflection. Implicit schemes from n+0.45
to n + 1 were tested. This included computation of spatial derivatives in time level
n + 0.5, i.e., method proposed by Hodges in [2] and used in [5].

System of intrinsic equations for beams shows very unusual characteristics. Nu-
merically stable solution is obtained for the spatial derivatives computed in the time
level n + 0.7, see figure 4. This is used as reference solution for comparison. Stable
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Figure 4: Stable solution with spatial derivatives computed at time level n+0.7.

Figure 5: Demonstration of numerically induced oscillations for n+0.5 in comparison
with the stable solution for n+0.7 (corresponds to the results published in [5]).

solution can be obtained for settings between approximately n + 0.55 and n + 0.89.
All settings from this interval gives numerically stable solution. If n + 0.5 is used,
non-physical numerically induced oscillations occur, see Fig. 5. This corresponds to
the results presented in Fig. 15 in [5]. Further decrease of θ leads to strong numerical
instability as expected, see Fig. 6.

Increase of the value of θ above 0.89 causes also numerical instability, see Fig. 7 for
θ = 0.9. This is quite surprising and unexpected phenomenon. Original expectation
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Figure 6: Unstable solution for n+0.45.

Figure 7: Unstable solution for n+0.9.

was that increase of the value of θ brings more stable solution. However, this system
of equations has interval of numerically stable solution for θ approximately from
0.55 to 0.89. Some type of numeric instability can occur outside of this interval, e.g.
numerically induced oscillations of divergence of the solution. Numerical stability for
different number of elements were also tested with the conclusion that the stability
region remains the same.
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5. Discussion

Numerical stability of the solution of intrinsic equations for dynamics of beams is
presented. Test case is simple cantilever rotating beam with harmonic load. Various
discretization schemes are tested with the computation of spatial derivatives from
the variables in different time levels n + θ from n + 0.5 to n + 1. The numerical
solution is stable for the values of θ between 0.55 and 0.89. Instability for lower
values of θ was expected and examples can be found in the literature.

Numerically unstable solution is obtained also for θ higher than 0.9. Originally, it
was assumed that higher value of θ increases numerical stability of the solution. This
assumption was not confirmed. Very surprising fact is that the solution is unstable
for the fully implicit scheme, i.e., spatial derivatives are computed from the values
in the next time step. Numerical stability does not depend on the number of beam
elements. This information have to be respected during the development of numeric
schemes for intrinsic equations.
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