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Abstract: The article deals with the analysis of the dynamic behavior of
a concrete structural element during fast dynamic processes. The constitutive
material model must be chosen appropriately so that it takes material viscosity
into account when describing the behavior of material. In this analysis, it is
necessary to use fairly complex viscous material models which can affect, for
example, vibration damping and the dependence of strength or even of the en-
tire stress-strain curve on the strain rate. These relatively complex models are
often formed via the combination of viscoelastic models with viscoplastic mod-
els or viscous damage models. Numerical simulations are performed for these
models. The numerical analysis is validated by experimental measurements.

Keywords: dynamic damping, Rayleigh damping, material viscosity

MSC: 74H05, 74H45, 74C10

1. Introduction

Within the field of engineering, research of constitutive relations is of key impor-
tance in the effort to ensure numerical simulations to correctly express the mechan-
ical characteristics of concrete under complex loading conditions. Many tests have
already proved that concrete has typical mechanical properties, such as the demon-
stration of different mechanical characteristics under uniaxial tensile and compressive
loading conditions, stiffness degradation under cyclic loading conditions, irreversible
deformations after unloading, unilateral and rate-dependent effects, etc. Inelastic
deformation can be simulated by the plastic theory (see [5]), while, e.g., stiffness
degradation and the unilateral effect can be researched through the damage theory
(see [6]). In recent years, many researchers have combined the two theories together
to form a coupled elastic-plastic damage model (see [7], [8], [9]). The strength of
concrete increases with increasing strain rate. Strain rates in the 1 to 10 per sec-
ond (-/sec) range will produce peak strength increases of about 20 to 50 percent in
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compression and notably more than 100 percent in tension (see [1], [2]). The ini-
tial elastic modulus does not change significantly with strain rate, but its change is
important for the vibration damping of concrete structures (see [4]).

2. Theory

2.1. The visco-elastic-visco-plastic-damage material model

This combined model is based on several sub-models: a) viscoelastic model, b) vis-
coplastic model and c) viscodamage model. The first of the above-mentioned models
uses the Standard Linear Solid (SLS) (see [4]) model for the calculation of viscoelas-
tic response. The second model in the resultant combination takes into account
plasticity with viscosity (strain rate effect) via Dynamic Increase Factor (df ) curves
and its output is the viscoplastic response. The last model in the combination takes
damage with viscosity into account again via df curves, but in this case the output is
the viscodamage response. The resulting constitutive relationship for the described
final combination is as follows:

σ = (I−D) : C : (ε− εve − εvp) , (1)

where I is the fourth-order identity tensor, D is the fourth-order damage tensor, C is
the fourth-order elasticity tensor, ε is the second-order strain tensor, εve is the second-
order visco-elastic part of strain tensor, εvp is the second-order viscoplastic part of
the strain tensor. The following viscoelastic prediction and viscoplastic/damage cor-
rection were implemented (it is a common iteration process in material nonlinearity):
1) V iscoelastic prediction, based on the theory of visco-elasticity (Standard Linear
Solid model) (see [4]). The material model inputs are a) the strain tensor reduced
by viscoplastic εvpn and viscodamage εvdn strain tensors from the previous increment
εn+1 - εvpn - εvdn and b) all the state variables from the previous increment for the vis-
coelastic model. The output is the viscoelastic strain in the current increment εven+1.
It applies εn+1 = εe1n+1 + εven+1 + εvpn + εvdn and σ1

n+1 = C : εe1n+1, where εe1n+1 is the
first estimate of the elastic strain tensor and σ1

n+1 is the corresponding first estimate
of the stress tensor.
2) V iscoplastic correction, based on the theory of plasticity (Rankine-Hill model)
(see [5]) with viscosity according to df curve. The material model inputs are a) the
strain tensor reduced with the current viscoelastic strain tensor εven+1 and the vis-
coplastic/damage strain tensors εvpn , εvdn from the previous increment εn+1 − εven+1 −
εvpn − εvdn and b) all the state variables from the previous increment for the vis-
coplastic model including for example the accumulated viscoplastic strain and so
on. The output is the viscoplastic strain in the current increment εvpn+1. It applies
εn+1 = εe2n+1 + εven+1 + εvpn+1 + εvdn and σ2

n+1 = C : εe2n+1, where εe2n+1 is the second
estimate of the elastic strain tensor and σ2

n+1 is the corresponding second estimate
of the stress tensor.
3) V iscodamage correction, based on the damage theory (Mazars model) (see [6])
with viscosity according to the df curve. The material model inputs are a) εn+1 −
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εven+1 − εvpn+1 − εvdn+1 and b) all the state variables from the previous increment for
the viscodamage model including for example damage parameters and also accu-
mulated plastic strains in tension and compression. The output is the viscodamage
strain εvdn+1, the viscodamage in tension dvtn+1, the viscodamage in compression dvcn+1 in
the current increment. It applies εn+1 = εe3n+1+εven+1+εvpn+1+εvdn+1 and σ3

n+1 = C : εe3n+1,
where εe3n+1 is the third estimate of the elastic strain tensor and σ3

n+1 is the corre-
sponding third estimate of the stress tensor. Then the resulting stress tensor is
equal to:

σn+1 = σ3
n+1 = C : εe3n+1 = C : (εn+1 − εven+1 − ε

vp
n+1 − εvdn+1). (2)

This is consistent with the above mentioned constitutive relationship (1), the
damage tensor Dn+1 derived from the resulting damage parameters corresponds to
the resulting viscodamage strain tensor εvdn+1. Both equations ((1) and (2)) yield the
same resulting stress tensor σn+1 which is the most important result because the
internal nodal forces in the finite element method are calculated from this quantity
and it is used in the Newton-Raphson method.

2.2. Damping

To estimate the approximate material parameters of the Standard Linear Solid
(SLS) the equation of motion with damping (see (3)) was applied. For the SLS
model, two unknown parameters had to be set so that the oscillation was damped
by a relative damping of 2–3% according to the standard. The unknown parameters
were approximately quantified by inverse analysis. The values of the parameters
were determined from a single degree of freedom task (1D element with one node
fixed and with zero initial condition).

ü+ 2ξωnu̇+ ω2
nu =

(
ω2
n

k

)
p (t) (3)

ξ =
c

ccr
, ωn =

√
k

m
(4)

where u is displacement, k is stiffness, m is mass, p(t) is loading, ξ is relative damping,
c is actual damping, ccr is critical damping.

2.3. Dynamic Increase Factor

Viscous behavior in the visco-plasticity/damage combination was taken into ac-
count using the Dynamic Increase Factor (df ) concept. This factor is defined as
the ratio of the dynamic and static strength of concrete in relation to the strain
rate. As far as the prepared software tool for the Dlubal RFEM computer program
is concerned, a specific method was chosen for determining df according to the in-
ternational recommendations stated in the document CEB Model Code (CEB-FIP
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Model Code 1990) [3]. For the calculation of df it is needed to calculate the effective
strain rate ε̇ef , i.e.,

ε̇ef =

√
2

3
{(ε̇x − ε̇y)2 + (ε̇x − ε̇z)2 + (ε̇z − ε̇y)2 + ε̇2

xy + ε̇2
xz + ε̇2

yz}. (5)

2.3.1. Dynamic Increase Factor for compressive loading

According to the CEB model, in the tensile area the calculation of the df must
be divided into two intervals depending on the strain rate:

a) For ε̇ef ≤ 30 s−1 : df =
fc
fcs

=

(
ε̇ef
ε̇s

)1,026αs

(6)

b) For ε̇ef > 30 s−1 : df =
fc
fcs

= γs

(
ε̇ef
ε̇s

) 1
3

, (7)

where df is the Dynamic Increase Factor, fc and fcs is the dynamic compressive
strength at the strain rate ε̇ef , or the static strength at the strain rate ε̇ef . The
validity of the relations above lies in the range [30 · 10−6; 300] s−1 for the strain
rate ε̇ef , and the static level of strain ε̇s is considered to be 30 · 10−6 s−1. It is true
for the coefficient γs that

log γs = 6.15αs − 2, where αs =
1

5 + 9 fcs
fco

(8)

in which the value fco is considered to be 10MPa. The relations above show that
the df is higher for concretes with lower compressive strength.

2.3.2. Dynamic Increase Factor for tensile loading

The relation for the calculation of the df factor in tension depending on the size
of the strain rate is defined by the relations:

a) For ε̇ef ≤30 s−1 : df =
ft
fts

=

(
ε̇ef
ε̇s

)1,016δ

(9)

b) For ε̇ef >30 s−1 : df =
ft
fts

= β

(
ε̇ef
ε̇s

) 1
3

(10)

where df is Dynamic Increase Factor, ft and fts is the dynamic tensile strength at the
strain rate ε̇ef , or the static strength at the strain rate ε̇ef . The validity of the above
relations lies in the range [30 · 10−6; 300] s−1 for the strain rate ε̇ef , and the static
level of strain rate ε̇s is considered to be 30 · 10−6 s−1. It is true for the coefficient β
that

log β = 7.11δ − 2.33, where δ =
1

10 + 6 fts
fco

(11)

142



in which the value fco is considered to be 10 MPa. It follows from the relations
above that the df is higher for concretes with lower tensile strength and contains
a discontinuity at the strain rate of 30 s−1.

3. Benchmark and experiment

The first basic validation of the material model was done using the benchmark
model (Figure 1). The benchmark model was based on a single 3D solid finite element
which was loaded in tension and compression by controlled deformation. The one
dimensional stress state was ensured by a suitable boundary condition. The results
are calculated for different strain rates.

Figure 1: Benchmark model.

The main validation simulations were performed on a computational model of
a reinforced concrete beam which was used in laboratory tests. The experiment
involved measuring the dynamic response of a beam exposed to the impact of a punch
in a drop weight tester. The beam (dimensions 1.7×0.25×0.12 m) was placed simply
on wooden supports and subjected to impact of a falling 500 kg weight.

Based on the real shape of the reinforced concrete beam, an idealized 2D com-
putational model (see the Figure 2)was created from planar elements in the Dlubal
RFEM system environment, which enables dynamic analyses in nonlinear dynamics.
The simplification of the investigated process into a planar model was performed in
order to reduce the computational time. As part of the idealization of the computa-
tional model, the employed wooden supports were modeled as flexible line supports
with pressure only supports with corresponding stiffness. Using this support non-
linearity, the real upward jerking of the beam after contact with the punch could
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Figure 2: Model of the reinforced concrete beam in software RFEM.

be simulated. To validate the input quantities, the response of the beam to the
fall of a weight from the height of 75 cm was measured during the experimental
research. The numerical simulation was modeled as a contact of two bodies. An
explicit method for solving equations of motion was used for the calculations.

In order to compare the material model with the experimental measurements,
the deflection at mid-beam on its upper line at the point of impact of the punch was
measured with a camera. We tested three df curves (d1

f , d
2
f , d

3
f ). The d2

f curve repre-
sented the concrete class 22 MPa and it was calculated according to the CEB Model
Code (CEB-FIP Model Code 1990)[3] (equation (6)–(11)). The d1

f curve was lower
than d2

f curve and d3
f curve was higher than d2

f curve. Next we tested three variants
of the SLS model (SLS1, SLS2, SLS3) with the respective viscosities 1.2e7, 1.2e8 (the
closest to the experiment), 1.2e9.

4. Numerical results

4.1. Verification the Dynamic Increase Factor of the effect

For the material model a single-element verification study was performed first.
The results show the ability of the model to respond correctly to different strain
rates (see the figures 3 and 4 below). The numerical results obtained from the
FEM model were exactly the same as the results obtained from the analytical equa-
tions ((5)–(11)).
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Figure 3: Influence of the strain rate effect on uniaxial compressive stress-strain
curve.

Figure 4: Influence of the strain rate effect on uniaxial tensile stress-strain curve.
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4.2. Dynamic response of a reinforced concrete beam to the impact in
a drop test device

The graphs (see the Figures 5, 6 below) show the effects of two different factors
on the dynamic response of a reinforced concrete beam: 1) the influence of the
viscoelastic model; 2) the influence of the dynamic increase factor. Each graph
shows time curves of the experimentally measured and numerically calculated vertical
deformation (deflection – displacement in the vertical direction) at the middle of the
upper side of the beam. The best of all the calculated variants was the combination
of df2 curve with SLS2 (for damped oscillations 2 − 3%) because the results were
the closest to those from the experimental measurements (see the Figures 5 and 6
below).

Figure 5: Influence of the visco-elastic model.

Conclusion

The use of a visco-elasto-visco-plastic-damage constitutive model to investigate
the behavior of concrete under dynamic loading is presented. The plasticity is estab-
lished in effective stress space with the Rankine-Hill criterion, while the damage part
is based on equivalent strains in tension and compression. Viscous regularization of
the elasto-plastic-damage model is implemented to include the rate effects, including
the df curves and damping. The correct use of the rate effect is validated by the
benchmark. Further, the presented material model is used for modeling the above
described experiment with various input parameters with aim to find the parameters,
which fit experiment as well as possible. The best results are obtained when using
the following parameters: 1) SLS2 parameters which are determined so as to dampen
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Figure 6: Influence of the dynamic increase factor.

the oscillations by a relative damping of 2 − 3% according to the standard, 2) df2
parameters corresponding to the concrete class used in the experiment (22 MPa).
The values of the parameters are determined by comparison of the numerical results
with the experiment and the best agreement is achieved for these parameters. It
can be concluded that the presented model can effectively simulate the mechanical
behavior of concrete under dynamic loading.
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[4] Němec, I., Trcala, M., Vaněčková, A., and Rek, V.: Dynamic damping - com-
parison of different concepts from the ponit of view of their physical nature and
effects on civil engineering structures. In: Chleboun, J., Kůs, P., Přikryl, P.,
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