
1973-1974

Zdeněk Frolík
Four functors into paved spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1975. pp. 27–72.

Persistent URL: http://dml.cz/dmlcz/703118

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703118
http://dml.cz








-30-

ved spaces has Í·o1" its mcrphis,ms the mappings f'.! 
: { X„ l: )--::> {Y, ·Y.,} such that f'-l [ 3Y-J c X • So 

{ť': <x) coz� < Y > coz)--;,, Cr:< o x, coz Y)-XO Y, coz Y))

is a full embedding of' (U) coz into paved spaces. If
there is no danger of' confusion, the functor will be 
denoted by coz, hence coz X is a collect ion of' set s . ., as 
well as the paved space < a x, coz X) • 

Using the Urysohn Lemma f'or paved spaces (an ob
vious 11ersion of' the usual Urysohn Lemma) we obtain that 
<X,$) : coz Y f'ar some Y ±r and only if the follow

ing two condit ions are f'ulf'illed: 
al . � is fi.nitely multiplicative, and countably 

additive. 
b) � is co-normal , t hat me ans : i:f' 

Ui E �, such that u1 v u2 = X, then there exists Vi e
-. � , lli1,n v

2
, = 0 such that x- V i c u

i
.

Since bounded unif'ormly continuoua functions ex
tend, it is easy to che ck that the functor coz preser
ves embeddiI)ES (this will be o.sed witbout aey reference). 

In conclu.sion note that X e < Y > Ba iff Ba X: = Ba Y.
The pavett spaces < X,Ba X> are distinguished amor1g thG 
paved spaces by_ the property that the pavemsnt s is a 
6 -algebra.

1. 3. Products of' coz-spaces. We shall prove that
the category o� coz-spaces (see 1.2) has iToducts, and 
show éxactly which products nre preserved by the func
tor coz. 

Lemma 1. coz X:><: coz Y = coz (p1X)'(. Y), 
Proo:f „ Let � be the s tructure o:f the s pace on 

the right-hand side. It is enough to show thut � is 
the smallest collection of sets such that 
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1. '}d, is closed under finite intersections and count-
able unions
2. '2j, contains the preimages under the projections of
coz-set.

Then it will be obvious that � is the structure 
of the space on the· lef't-hand side. 

Clearly ?I, .:> ·'7¼ • Assume G e $ • Hence (see 
1.2) "there exists a sequence {1' n ½ of countable uni
:f'orm eoz-covers of p1X, and a sequence ,l:W' n 1 of com
pletely coz-additive unif'orm eovers of y- such that 

G =l.ftVxlf I <v,w) eU,ťV'n"' 1JJ'nf, V�Wc:GJ. -

For each n, and each V E 1' n' set 

o·n V ==V-i. V.;,c. \V J W E ?O'n, Vx W c G l == VxU-í W i W € Wn,
, 

v)C. wco J • 

Clearly ( complete coz-additivity) Gn,V e 1r , and
since 

G =t)-\. Gn, V Í V E 1J n J ,

G belongs. tn 1=}- (the index set is countable L, 
By a routine argument \Ve obtain f'rom Lemma 1 the 

following result: 

The orem 1. The category cf' eoz-spf: ces h<1s pro
dueta, and 

n -{ coz xa � = coz n { p0xa·; ::: coz r, { p1Xai

Lemma 2 „ If $a(, is sequent ii:�l ly regt1Lr�:"' a:nd 
p oG X*X, pce, Y:4:-Y, then 

coz (X:,< Y):t= coz(piJG. X.xpe(,Y),,

C 11 I"" �+lv • X oC+ly . oro. . ary ,i. i p a ť , p 4= Y t h e n 

coz (Xx Y)4=- coz (p.:,r,+lX:,c;. pci+l Y) .,

Proo:ť of' Lemma 2. ··:1e may and shall assume that X 
and Y are set-fine spaces of' cardinal �oc; , X = Y. Tlw 
diagonal LJ. is a cozero set in X� X ( coz = exp), how-
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Lemma 2. The ·Pnmjly -tf�:ť: X)(X ·--+ sxs Ir e _ 
EU(X,S), S metrie, f ontoJ is a eountably directed 
projectively generating family. 

í'roof of Theerem 1 (IUnt). To prove (a) one on
ly n� eds to know t hnt i:ť S is metrie ( or more gene
rally paracompact) then each neighborhood of the dia
gonal is 3 uniform vieinity of the diagonal of trs 
(and this is proved in almost all textbooks in topo
logy). For ( b) one uses Lemma 1, and an obvious faet 
that 

coz(trS><-trs> = coz(S><-S) 

f'or S metrie. The rest is easy, .'3nd if one wants to 
understand the matei-•ial, he must do the proofs with
out gny further comment. 

Remarks. (1) The spaces in Theerem 1, State
ment (f), called metric-f'ine or metri. c-tf, were in
troduced by A.·Hager, who studied them in the catego
ry of all 1-distal spaees ( = subspaces of products of 
separable spaces) where everything is greatly simpli
fied by the ťact that for this C.'.ltegory the coz reťi
nemen t is fine-maximal. It was proved by M. Rice and 
the r:resent author that the coreflection on metrie-
tf spaces is obtained in one step. It is easy to see ·
that if 1C is a class of spaces, and if c is a core
flect ion then the class of all spaces X with the pro
perty f € U(X,K) implies :ť. € U(X, cK) f'or each K in 1C ,

called ·X -c s paces, form a corefle ct ion class. This 
general situation has ooen studied by A. Hager, M. 
Rice, and in quite general categories, by J. Vilímov
ský. 

(2) Actually we proved that coz_ is the finest
f'unct or -in Inv ( coz). 

means 
ces): 

In conclusion we state a description of coz_ b� 
of uniťorm covers. (A note on metric-fine spa-
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The most interesting result is that (6) implies 
(1). This was proved ťirst by D. Preiss, and a beauti
ful prooť by M. Zahradník ťollowed in a few houra. 

The ťollowing result is useful: 

Proposition 1. If' X ia inversion cloaed Cor a 
subspace oť an inversion closed space) then every uni
ťormly continuous function on a· subepace of X extends 
to a uniformly oontinuous ťunction on x.

The prooť. follows immedistely from the following 

Lemma. If Z is a zero-set in X, then every coz• 
funct ion on Z admits an ext ension to a coz-funct ion 
on x.

The PI'00f of Lemma ia just. a version oť P. Ury-
, ' 

sohn s prooť oť the theorem that in a normal topolo-
gical space continuous functions on cloaed subspaces 

extend continuously to the whole space. 

Theorem 3. The class of Alexandrov 9paces: is 
coreflective, and the ooreflection sis described as� 
follows: aX is projectively generated by the identity 
aX � X and all bounded coz-functions on x.

The class. of all inversion-closed spaces is 00-

reflective, and the coreflection H is projectively 
generated by the identity HX � X, and all coz-funo-
tions. 

Both coreflections preserve the cozero-sets 
(1.e. a, HE. Inv ( coz)). 

Prooť. Cleiu-13 the spaoe HX projectivel.:Y genera

ted by RX-� X, ani all coz-functions is coarser than 
coz_X (use. Condition (2) in Theorem 2), and hence 
HE.Inv;(coz). Since a is coarser than H1 necess:arily
a E Inv( coz). It ťolla.vs that 1-ť. ::: H, a� = a , and ob
viously aX is Alexandrov, and H ia inversi on-closed. 
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( 5 l If' X is pro je cti vely generated by U(X), then· 
HX = H PX = D coz_x. 

C 

2.3. More about metrie-tf spaces. Most of the 
resul ts are taken from "Uniform mapa int o normed spa� 
ces", Ann. Inst. Fourier 1974, 43-55. 

Theorem 1. The following properties of a space 
X are equiva;ent: 

(1) coz_X = X (see 2.1)

(2) If S is a metrie space, then U(X,S) is clo
s-ed under t aking strict ly cont inuous limi ts of sequen
ces. 

(3) U(X) is inversion-closed, and U(X,B) is a

U(X)-module for each normed (or Banach or ..2
1

(A)) s_pa
ce B. 

(4) If -tf al : X ---:,- . .e
1 

(A) · is uniformly cont inµ
ous and '4: O at each point, then -{coz f'

8
J is a uni

form co-ver of X.·· 
(5) Every .i

a,
-partition of' unity is ..€

1 
uni

formly continuous. 
(6) For aey normed ápace B (or Banach space, or

l1 CA}) U(X,B) is sca:larly in-version-closed, i.e. if' 
f: X--,, B is unif'ormly continuous and f'x ::I= O for ead1 
x, then 

{x � 1/Uf'x 112. • fx � : X -� B

is uniformly continuous. 
Proof'. Just Condition (5) is new. Cleárly (1) im

plies- (5). We shall prove that (5) implies that any 
6'-uniťormly discrete completely coz-additive cover 
is unif'orm. We need the fol lowing observation. 

Lemma 1. If {fn1 is a countable partition of 
unity of X ranging in U(X), then there exists an .la, -

partition �g
k

l such that each g
k 

is a multiple of' so
me fn • 
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Proof. Replace ooch fn by a finite sum of func-

t ions with norm at most 1/n • The rcsul tin.g sequence 
.fg ; has the property thrlt Ř gk M"' � o, and certain-n 
ly su'ch a sequence in U (X) is equi-unif orm. 

From Lemma 1 we cbtain (see. 2.2, Theerem 2(b)l 
that (5) implies that X is invers·ion-closed, hence 
Alexandrov. By Theo�em l each countable coz-cover of 
X is of the form -lcoz fn1 with fn in U(X). By Lemma
1, we may assume that -iť

11
\ is an -ťq) ••partition, and 

by Condition 5, -tf n\ in .t.
1 

uniťormly continuous. 
It follows that evury countablo co:-�-cover is uniťorm, 
and of the f'orm -icoz t n l with -tf 11\- a . ť 1 uniformly
continuous partiticn of unity. 

Finally, let Q.L = Ui 1L'1. l be a comr,letely additi
ve coz-cover, · e ach ?i, n hcing uniťcrmly dis cr1.:te. Let 
Un be. the union of ·Un, and let �f n 1 be an .i 1-par
tition of unity such that U

11 
= coz rn.

Choos0 a uniformly continuous pseudometric d such 
that each U,.,.. :i.s u niťormly diecrete w.r.t. d • Assume 
that the distancos of sets in •Un are � 2 .,e, n E G>o •
Thon there exist:J �•n ..e n-Lipschitz ramily ·hiu I U E Un l

oť non-negative :ťunctions such that il guliQ::l i:- 1, and 
each gu is 1 on u, and zero on the union of all remai
ning members of 1/i.,n� 'I1hen �oplace e.-;1ch gU by . .i n 

functions 1/ .in • g0, .11ld ctenote the resulting family
-\.hb I be Bn¾. Now the portition of unity 

.( f n • hb l n c: Q0 , b E Bn l

is J,C() uniforrnly cont:inuous, and is subordinated to 
,U, • By Condition (5) this partition is I. 1-uniform
ly cont inuous, and h1::nce the class of members of 'U

l� U forms a uniform cover.
Since each cover of the form 'U is st ar-reťi- . 

ned by a cover of this form, we get that each cover 
of that.form is uniform. This concludes the proof. 
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2.4. Coz-f'ine spaces. Recall that X is coz-f'ine if' coz (X,Y) =

= U(X, y) for each Y. The f'irst general result says (A note· on met

ric-fine spaces) 

Theerem 1. The f'ollowing conditions on a space X are equiva-

lent: 

(1) X is coz-f'ine.

(2) X is proximally fine, and Alexandrov.

(J) X is proximally ťine and coz_X = X.

Note that cozf' ♦ Inv Ccoz). Indeed, 1ť cozf' e Inv (coz) then

necessarily cozf' = coz_ and this is_ absurd:

if X has an uncountable discrete f'amily, then coz_ p0X 'ie not 

f'iner than X by 2.1, Theerem 3, m,d of course, coz p0X = coz x.

A straightf'orward example: Take an uncountable set-f'ine (=unif'orm

ly discrete) space X and consider the space Y = p 0
%-<p

0
X. Then

cozf'Y = X x X (because the two project ions Y � X are coz-mappings),

but coz Y =t:, coz X >< X. 

· In general, if' a refinement J,l, is not f'ine-maximal (i.e.,

� does not generate 3t ) the following two quest ions are. basio 

A. For which spaces X, :Rf X = (R_ X'l

B. For which spaces x, .1l1 X E · "'Jl, X 

(1.e. $i,f X ia is omorphic to X in $ under the identity mapping). 

For 9t = coz these two questions were answered by the iresent 

aithor as f'ollows (A remark on coz-fine spaces, Seminar Uniform 
Spaoes, March 1975). 

Theerem 2. Eaoh of' the following condit ions is neoessary and 

suf'f'ioient tor coz_X = cozf'X

(1) Ir �G
a.

f a�A 3 is a completely coz-additive disjoint fa-
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2.5. coz_+ ie D

0
• For the proof' ot the reeult in the title 

we need to know more about the cozero-sets in products. Pr�bably 
tbe result will tind turther applications. 

Theorem 1. The f'ollowing three conditions on a disjoint ta

mily -{V 8) I a� Al in X are equivalent: 
Cl) 1' = U{ V 

8
;>e V &i 1 is a cozero-set in X>cX. 

(2) For eac� n in c.c:>0 there exists a unif'ormly discrete fa

mily -l V
an

\ a€ A} such that 

V
8 

= V { V
an 

\ n E G)o 1
and 

Vn = U,{ V
an

\ a e A. i
is a cozero-set in X for each n. 

(3) There exists, a unitormly cont 1nuous mapping of' X into a

metrie space S Cwhich can be taken distally coarse) and a disjoint 
f'amily { G• \ a„ Al of' cozero-sets in S such that V 

8 
= f"-l [ G•]

for each a. 

We are ready to indicate the proof' of' the main result: 

Theorem 6. ( coz-x2 ) + = D.c•

Proof'. We already know that D1c Cé; Inv ( coě2 ). Assume t hat
F€ Inv+Ccol2). Then D

0 
o F is also in Inv+Cco!2'> an d so we may 

and shall. assume th8t D co F = F. Since FE Inv+ it is enough to

show that FX is finer than X for each distally coarse sp�ce X, and 

since every distally coarse space is projectively generated by· 

unif'ormly cont inuous mappings int o hedge hoge, i t is enough to pro

ve that FX is f'iner than X for each hedgehog. The proof of thie 

fact is just technically more involved that the proot of' the tol• 

lowing statement which is needed in the proof: 
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1t D is a unif'ormly discrete space (1.e. set-tine in the 

termin�logy- of' ref'inements) then FD • D. 

The tiret obaervation is that it ia enough to prove the st.

tem.ant Jus� for some n"s of' al'bitrary large cardinal„ because 1"

preserves subspaoes ( being in Inv +>. 

Let D be ot a sequentially regular oardinal. Since 

FD,c FD and D>< D 

have the same oozero-sets:, the d1.agonal. A of' D:x.D ie a cozero

set in J'D)(FD, and hence, by Theerem l the set D is unif'ormly 

� -dis.crete, and hence D = U-lDt\. j with each Dn unitormly dia

crete. Clearly PDn = D f'or each n (again FE Inv_,J. Since the car

dinal ot D is sequentially regular, one of' the set s Dn is eqůi- ·

pollent to D, and hence unif'ormly isomorphic to D. It f'ollowa 

that FD = D. 

The rest of' the · proc€ can be f'ound in Cozero-sets on unif'orm 

spaces, Seminar Uniform Spaces, March 1975. 
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§ 3. Her and sub funct ors

It 'ť is a class of spaces·. we denote by sub � the class 

of a1l. subspaces of spaces in <t , and by her� the claas of 

all spaces X such that each subspa,ce of X belongs to � • The 

class sub � seems to be quite use:f'ul (if <ť, is coreflecti'le 
. 

. 

then so is · sub 'ť , and even if 'l is not understood well the 

claes sub 'ť may be quite reasonable � �d in some theorems if 

<e suffices then so does sub <t ) , on the other band her ,:e 

seems to be quite "bad" even if 'l is very reasonable-. It should 

be remarked that � coreflect ive does not imply that her ct is 

coreflective Ce.g., hereditarily Alexandrov spaces in J.Jr. 

3.1. Hereditarily inversion-closed spaces. Hera we. present 

just two theorems, and two lemmas which might be more usef ul than 

the theorems. 

Theorem 1. The following conditions on a space X.are equiva-

lent: 

(1) Each subspace of X is inversion-closed (see 2„3), 1.e. X

:I.s hereditarily inversion-closed. 

(2) Each coz-function on each subspace of X is the restrio

t ion oť a unif"ormly cont inuous funct ion on x.

(3) · X is inversion-closed, and coz X= Ba x.

(4) Ea!ch countable partiticm of X ranging in Ba X 'is 9 uni

:f'orm cover of x.

(5) r is Baire-fine w.r.t. separable metrie-spacea.

(6) X- is Baire-fine w.r.t. the space P. of reaJ.se
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Proof'. Clearly (2) implies ( l), and by Lemma 1 below (1.) 

implies (2). So (1) and (2) are equivalent. By basic Lemma 2' be

low. (1) implies (J). It is quite routine thet (3) impli ea (4),

and (4) implies (5), and it is obvious that (5) implies (6). 

Finally Condition (6) implies (J); it is enough to show that 

coz X = Ba X, and this is easy (for a cozero-set G: consi der uni- · 

f'ormly continuous ťunct ion f' such that G = coz ť). 

Lemma 1 •. Iť Y is a subspace oť an inversion-closed space X., 

then each unif'ormly continuous ťunction on Y extends to a uni

f'ormly continuous f'unction on X. 

Prooť. Let f' be a· uniťormly cont inuous f'unctiom on a subspa

ce Y of' X. First observe that f' always extenda to a unif'ormly con

tinuous f'unct ion on a subspace Zof' X,which is & zero-set in X •

Indeed, choose a unif'ormly "ont inuous · pseudometric d on X such 

that f' 1s unif'ormly continuous on the subspace Y of' < X,d ) • 

Since the space R oť reals is complete, f' extends to a uni f'ormly 

continuoua- f'unction def'ined on the closure Z of' Y in < X,d) • 

Certainly Z is a zero-set i n  X. The proof 1s concluded by the f'ol• 

lowing version of' the Tietze-Urysohn extension theorem: 

. -

Lemma 1 · • If' Y is a subspace of' X,· and 1f' Y is .a zero-set 

in X, then each coz-runction on Y extends to a coz-f'unction on x.

Proof. Routi ne. 

Lemma Z ( the author's Measurable uniťorm spaces, TAMS 1914). 

If' a cozero-set G in X is an inversion-closed subspace oť x·, then 

G is a zero-set in x.

Proof'. Let G: coz f, where f' is a unif'ormly continuous func-

tion on x, and choose a uniformly continuous pseudometric d on X 





(3) coz X ::: Ba X.

3.2. Measur able uniform spaces. Fo llowing the paper "Measu

rable uniform spaces" ťhe spaces satis:fying the ·equivalent condi

tions in the following theorem are· called measurable. We refer to 

3.4 for further p!!>perties which may suppart the definition to use 

the term for this class. 

Theorem 1. The following properties ot a, space X are equiva-

lent: 

(1) I:f' Sis a metrie space then U(X,S) is sequentially closed

in pointwise topology Cin all mappings). 

(2) coz_X = X, and coz X = Ba X Csee 3.1 Corollary)

(31' For each subspace Y of X, coz_Y = Y 

(4) Each 6'-uniformly discrete completely Baire-additive par

tition of X is a unif'orm cover. 

Here we shall recall just the proof' of the equivalence ot 

(2), (J), and · (4), which is needed in the sequel. The reader 

should compare this section wi th 3.4 where Baire-fine and Ba_ 

functors will be mentioned. It should be noted that IL Rice pro

ved (indep endently) the equivalence of (2), (3) and something 

.similar to (4) Cwhich is more convenient for the proot). 

Proot. According to cha racterization of coz_X � r in the 

concluding theorem of 2.1, Condition 2' ia equivalent to Conditioa 

4. By Th eorem 1 in 3.1 evidently (3) impliea (2). The rest of the

proof, e.g. (4) implies (3), is apecific for thls situation. Per

hape the simplest proof consists in showina that Con�ition 4 is
. , 

hereditary, and in addition, each cover of the form in Condition
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(4) of a subspace Y of X is the trace of a cover of th is form ot

X. Assume thet $3 is such a cover of Y, and � = U, .a
.m,

i. such

tbat each S
,,., 

is unitormly dia crete. Let Bn be the union ot
, , !'3,n, • Choose Baire seta Bn in X such thet Bn" Y :: Bn, and we

, . 

. 

may. assume thet the sequence -'a,B
l:> 

1, is disjoint. Finally, since 

�.,,., is unitormly dia crete in Y, hence in X, there- ex:i sts • uni

for m ly continuous pseudometric dn on X, such thet

i B ( d , c , 1) \ C e: �.,i, t 

is disjoint. For C s �
"" 

put 

c'= B� n B(dn,c,l}.

Clearly 'l = -\.C" I C 6 .13 j is a o'-uniformly discrete complete

ly Baire-additive disjoint family in x, and 1¾> is the trace of 

.et on Y. Add X - U 'ť to '(! • 

Theorem 2. The class of all measurable uniform spaces is 

coreťlective, and the coref'lection, designated by M, is described 

as ťollows: The covers in Condition (5) forma basis for all uni

torm covers of MX. 

Proof. Coreflectivity is clear from Condition 1. It is very 

easy to check coreflectivity, and the descr iption of' the cor ef

lection directly from Conditi on (4). 

Corollary. M 6 Inv (Ba) ( i.e. M preserves the Baire set s), and 

Mis metrically determined Ci.e. MX is projec tively generated 

by all f: MX� MS, with f: M ·� S uniformly continuous • and S 

metrizablel. 

J.J. Heredit arily Alexandrov spaces. 
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Theorem 1. The f'ollowing conditions on a space X are equi-

valent: 
l) Each subspace of' X is Alexandrov, i.e. X is heredita�i

ly Alexandrov. 

2) Each bounded coz-function on any subspace of' X is a

restriction of' a coz-function on x.

3) X 1s Alexandrov, and the p coz X is normal Cit 

means, f'or each two disjoint cozero-sets o1 and G2 in X, there

exist disjoint zero-sets z1 and z2 in X such that z1 � G
1

; see 

4) X is Alexmdrov, and if YcX, z1 , z2e. zero Y, aJXi z1n

n z2 = é, then there exiat disjoint ze ro-sets z{ a,nd z; in X 

such that z
1 

:> Zi.

Proof'. By definition of Al-exandrov spaces Coridi tiom 1 and 

2 are equivalent (each bounded unif'ormly continuous f'unction ex

tends). Condition 2 implies Condition 3 because the characteris-

. t ic f'unct ion of' G1 on Y = o1 U o2 is a· coz-funct ion on Y. Condi

ťion 4 implies Condition 2 by Urysohn Extensi on Le�a. It re

mains to show 3) implies 4), and this follONs ťrom the f'ollow:Lng: 

Lemma 1. If' z1 and Zz are zero-sets in X, then there exist

disjoint cozero-sets· o1 and o2 such that G1 :> z1 - z2 , 02,::> z2 -

- zl. 
Proof'. Choose non-negative uniformly continuous f'unctions 

:r
1 

such that z
1 

= zero :r
1

, and de:f'ine 

o1 = -t x I r2x >t1 x } , 

G2 • -\ X \ f' l X > f' zX 1 •



c, -
... � .,_fl 

Corollery. Each of the following conditiona is necesaary 

and sutticient tor X to be hereditarily Alexandrov: 

a. The precompact reflection pX o:f' X is hereditarily Ale

xandrov. 
v 

b. The Samuel compacti:f'ication X of X Cthe core:f'lection o:f'

pX) is hereditarily Alexandrov. 

Remarks.· Ca) The hereditarily Alexandrov compact apaces 

are usually called F-spacea. For example, extremally disconnect

ed compact spaces are hereditarily Alexandrov, a nd so their sub

apaces; N - Nis hereditarily Alexandrov but 1s not extremally 

dia conne cted . 

Cb) The class o:f' all hereditarily Alexand rov spaces is not 

core:f'lective. For example for & compact space X let EX_..;,. r

be the projecti'/e progeny of X; 1.ey EX is extremally disc on

nec ted space, and the mapping is perfect and, this is not impor

tant, irreducible. Then the mapping is a quotient mapping w.r.t. 

the unique uniformities induc ing the topologies, EX is hered ita

rily Alexmdrov by Ca), but X does not need to be hereditarily 

Alexandrov Ce.g. if we take an infinite compact metrizable spa

ce for X).

Ce) The coreflective ha.11 of hereditarily Alexan·drov spaces 

consists exactly of spaC$S such that each :f'inite partition. by 

Baire seta is unif'orm. Hence the coreflection on the core:f'lective 

hall o:f' hereditarily Alexandrov spaces has the :f'ollowing covers 

for a basis: 

the meet o:f' an,y uniform cover with a :f'inite partition into 

Baire seta. 
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3.4. Some sub functors. We want to consider the eubfunc-

tors of functors we already s tudied. However, a generel approach 

mau be useful. Recall that a space X is injective 1f for any uni

formly con tinuous mapping of a subsp ace Z of any space Y int o X 

extends to a uniformly continuous mapping of Y into X. Every uni

form space can be embedded i nto an injective space (Isbell). 

Theorem l(Vil:ímovský, partly Rice, idea of the proaf' Isbell). 

If Cl 1s coreflective then so is the class sub <e of subspaces 

of sp aces in ·� • If c is the coreflection on C.C , then the 

coreflection sub c on sub'e is obtained as follows : 

If' Y is injective, and X � Y then 

sub c X � c Y, 

particularly, sub c Y = c Y for injective spaces. 

The ore m 2. If c is a metrically determined corefle ct ion then 

so is sub c, and 

sub c is (injective-metric) - c. 

Theorem 3. Let c be metrically determined coreflection such 

that 1f X '--7-Y with both X and Y complete metrie implies cX <-;,.. cY. 

Then 

su b c (complete metrie) - c. 

Theorem 3 is an immediate consequence of Theorem 2. On the 

other hand, a straghtforward proof, without any use of injections 

is baae d on the following modification of Lemma in A note on met

ric-ťine sp aces:. 

Lemma 1. Aasume that c is a corefle ct ion, and Jl is a coun- ·

tably productive class of metrie spaces such that .Al is heredi-
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tary, or Jt is closed hereditary and all spaces in Al are 

complete. 

For any X let x' be projectively generated by all f: · 
, , , , 

: X� ccS, S c.. ;A,\, , such that fE. U(X,S). Then X = X •

Corollary. (a) sub coz_ = (complete metrie) - tf

{b) sub H = Ccomplete metrie) - H 

Remark. Sub-inversion elosed spaees seem to be qui

te useful. Reeently J. Pachl showed th at for these spaces 

one gets perhaps the most natural statement of Shirota -

Katětov theorem and theorems connected with "completeness" 

and ''measures". The paper will appear in Stud. Math. 

We turn to the refinement Ba. As far as I know it is 

not known any description of Ba. On the other band, it is 

quite easy to show that Ba_elnv(Ba) (i.e. Ba_ preserves 

Baire sets). In this situation the ťollowing result Chig

hly non-trivial) seema to be basie 

Theerem 4. sub Baf = sub Ba_ =  M.

Theoran 4 follows ťrom t he following result: 

The arem 5. If X is t h€ product of a fami ly of comp-

lete metrie spaces then 

Bafx = Ba_x = M'l.

This is a corollary of' the faet that Theorem 5 1s 

true f or complete metrie spaces · (Baire seta a re complete 

metrie spaees, the · proof was connected by a lemma by D. 

Preiss in Comment. M8th. Univ. Crirolinae 1974) and the 

following simple but extremely useful 

Lemma {Tashjian) Every Baire mapping from a pro

duet into a metrie space faetorizes through a countable 

subproduct. 

Remark. The formula in Theorem 5 is true for in

Jective spaces. 
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§ 4. h coz-sets.

First there were hyper-Baire sets in uniform spaces (in

troduced f'or the purposes of non-separable des,cript ive theory 
, 

of' seta in unif'orm spaces in the present author s "Unif'orm 

and topological methods in measure theory and the theory of' 

measurable spaces", Proc. 3rd Prague Symposium 1971; actually 

R. Hansell had already studied them in metrie spaces). Then

there were introduced hyper-coz sets, simply h coz-sets, to 

make the theory of hyper-Baire sets elegant, and perhaps to 

understand the subject (Interplay of measurable and unif'orm 

methods, Proc. 2nd Yugoslavian Int. Top. Symp. ,Budva 1972, 

and Locally e-f'ine measurable space�, Trans. Amer. Ma th. Soc., 

196 (1974) ,237-247). The reader is recommended to look f'irst 

at these three papers. Nothing new has happened since then in 

the theory of hyper-Baire seta, and theref'ore we restrict our 

attent ion to h coz-sets, and more over, we jus t try to expla in 

the main ideas of several new results. For details aee the 

informal notes "Seminar Uni:ťorm Spaces 1974-5". 

4. 1. Generalities. Following "Basic ref'inements", the

collection of all hyper-cozero-sets in a uniform space X, de

signated by h coz(X), is the smallest collection of' seta 

which contai ns the colleotion coz(X) of' all cozero-sets in 

X , and whi ch is closed under unif'ormly o -dis crete unions. 

A hyper-coz-mapping of X int o Y is a mapping of' X into Y �uch 

that the preimages under f' of seta in h coz(Y) are elemente 

of h coz X. Clearly the class of all hyper-coz-mappinss is 
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a ref'inement · h ccz of uniform spaceso 

We also denote by h coz the corresponding :functo� into 

paved spaces. Hence h coz X is the set X en dowed by the 

collection h coz X of' all h coz-seta, in X • 

Note: 

h coz (X)= h coz (DCX)

and hence 

D
0 

e. Inv (h coz) •

It should be remarked that one can prove Cand this 1s not 

easy) that D
0 

= h coz+ •

In what follows we shall need the ťollowing classif'ica

tion of h coz-sets. Put h 0coz(X) = coz X, and if' h ,G coz(X)

are defined · f or (3 < oC , then h-x. coz(X) consiats of uni-

f'ormly 6 -diacrete uniona of seta in the union of all 

hf.> coz(X) , /J < iX, • The elemente of h oc,coz(X) are called

the hyper-cozero-sets of X of the class at most oc, • 

Clearly 

h coz X = u� h °" coz X l •

4.2. (Compact X metric)-t
f' 

= (D
6r n h coz)

f' 
•

For a classification of hyper-cozero-sets we need a new

characterization of metrie-tf locally p-f'ine apacea introdu

ced by the 8.1 thor (Locally e-fine measurable spaces) for the 

studying of hyper-Ba:i.re sets. Fir st we note the equivalence 

of the three new condi tions. 

Theorem 1. The f'ollowing three conditions on a unif'orm 

space X are equivalent: 



- 58 -

(1) I:f' S is metrie, and K is compact, and i:f' f: X�

� S x K is uni:f'ormly continuous, then so is f: X ---+

� t
:f'

(S .>< K) • 

(2) Condition (1) :ťor K = X (the Samuel compactifi ca-

tion of X, i.e. the completion o:f' PX ). 

(3) I:f' S is metrie, and if f: X� S is uni:f'ormly

continuous then the identity 

X� tf ( 'f-l [S])

is uniformly continuous Chere 

extension o:f' :f' ). 

v ...,. v f: X ---+ S is t he cont i nuoua 

Proof'. Clearly Condition (1) implies Condition (2)., and 

the convers e  implication :f'ollows immediately from the elemenT

tary fact that every uniformly c ontinuous mapping into a com

pact space :f'actorizes through the Samuel· compactification. 

Conditions (2) and (3) are equivalent because f-l CS) ie

homeomorphic Y&h a closed subspace o:f' S x X , namely with 

the graph o:f' the perfect mapping 

'!: t-l ( SJ -� S , 

and because s�x is paracompact (i:f' Pis paracompact, and 

1f F is closed in P , then t
:f'

F is a s ubspa ce o:f' tfP ) • 

Condition Cl) suggests a name for these apaces: Cmetricx.

� com?Cct )-t
:ť 

• 

Theorem 2. Each ·of the conditiona (1) - (3) in Theorem

2 is equivalent to each of the following conditions 

(4) X is metr ie-tf, and h coz X= coz X •

(5) X is metrie-tf, and each uni:f'ormly locally uni:f'orm-

ly continuous :f'unc tion is uniformly oo nt inuous. 
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(6) X ia metrie-tf� and loeally p-f'ine.

( 7) X is metrie-t
f'

, and loeally p1-f'ine.

This is a theorem ťrom the paper ref'erred to above. The

equivale nee of (4) - (7) is iroved ťrom the eharaeterization 

of metrie-t
f' 

spaees by means of the property that €t -unif'orm

ly diserete eompletely eoz(X)-additive eivers forma basis 

for unif'orm eovers. Coµditions (1), and (3) imply Condition 

(4) beeause, if' (1) holde, th en taking a singleton for K we

get that X is metrie-t
f'

, and if' (3) hold& then the unif'ormly

di11crete union of' eozero seta in X is the intersection of X
"-l. 'Wth a unif'ormly diserete union oť eozero seta in t

f' 
f' r SJ

f'or some f': X� S , and this union is a cozero _set, beoau

se i:f t
f'

Y = Y then h coz Y = eoz Y •

It remain s to show that some oť the eonditions (4) - (7)

implies one of' the conditiona (1) - (3). Condition (6) implies 

Condition (1) because ťor any eompact apace K , and any para� 

eompaet space Y 

tf (Yx K)

is the eoarsest unif'orm spaee ťiner. than t
f'

Y x lC with_ the 

property that it is uniformly loeally p-fine. This f'ollows 

from t he f'ollowing s imple resul t : 

Lemma 1. Let f: Z� Y be a perf'ect mapp1.ng, and Y 
, 

be paracompact. Let Z , be the set Z endowed with a unif'ormi-
, 

ty such that f': Z � t
f'

Y is unif'ormly eont inuous and

t
f'

z. = t
f'

Z • Then t
f'

Z is the eoarsest unif'orml.y f'iner than

Z' and with the Jr operty: it is unff'ormly loeall3 p-f'ine. 

Proc,f'. Let 1ť be an open cqv er of' Z • Let 11)' cons ist 
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S� IC) unions of element s oť coz (s:>< K). 
PX'oo:f'. Let � Fn 1 be a sequence of closed seta in S X 1C 

such that 

G = U-íFn} • 

We may and shall assume that i.Fn l is increasi ng. 

Fix n e cl>o • We shall find a: � -UE.iformly diecrete 

union Gn of cozero-aets in S x K such that 

Fnc. Gnc G •

To this end we need to show the crucial property: 

i:t x E. S then there exist a n open neighborhood Ux of

x , snd a cozero-set Vx in K such that 

F " Cu >< v ) = F n (U X K) • 
n X X . n . X 

Once the pr�perty is verified, then the conclusion ot· the 

proof 1s rout ine : The co lle ct 1 on of all ·f Ux 1 . is an open co

ver of S ; t ake a 6 - uniformly dia cret e oi:e. n refinement 10' 

of { Ux l , and for each \V in "W' let V(W) be &1'\V Vx with

1' c Ux• Cleárly the union Gn o:f' all I'>'- V(Wl, W E '1/J' , con-

tains Fn and is contained in Gn by the crucial property.

It remains to check the crucial p:roperty. Firstly -by com

pactness of K , for each m � n there exist and open neighbor

hood Um of x , and a c ozero-set V m in K such that

Um ,c. Vm C G ,

and 

((x) .. >tK)nFmcvm .

'\fe may choose Un such that the dia meters con-verge to O • As

sume that no Um ,c. Vn has the proI,B rty

Fn n (Um� Vm)= F0 n (Um� K) •
Then we cen choose a sequence �< xm,Ym )l in .F

0 
s�oh tl'iat
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xm e Um , Ym + V m 
for each m • Since' ixm � converges to x , and sinoe � Ym \ 

has a cluster point y in the compact space K , .th e point 

< x,y) is a cluster point of' -i< xm,Ym > J in S)(. K • Since 

the sequence ranges in F , and Fn is closed, we have
n 

< x,y) E Fn • 

On the other band, y is in no V m , hence < x,y) does not 

belong to G , and this contradicts to F' c G • 

Lemma 2 f'ol lows also from the following lemma. 

Lemma 3. If' S 1s metrie, and if Kis compact then 

tf (S,,._ K) has ff -uni:formly dia crete ( in S >c. K) coz (S ')I(. K)

covers for a basis for all uni:for m covers. 

Proof: follows from the proof of Lemma 1. 

Recall that a mapping t: X� Y bel�ngs to 31rór cx,Y) 

if for every uniformly dis cret e f amily i Y8 1 in Y the family

-tf-l [ Y8) 1 is 6 -unif'ormly discretely refina:ble, shortly

odr ,-i.e. there is a ó-unifor�y discrete f'amily .(Xbl 

in X which refines -i f-l C Y8 J J, and
· 1 ' 

U-lXbl =U-tf- ( Y
a.

) l'

in other words, there exists a f'amily i Z8n1 such that each

iZ8n\ a i is uniformly discrete in X for each n ,  and 

f-1 ( Ya J = u { zan \ n • G.>o l •

Clearly 3) 6 r 1s a r·efinement of' the category oť uniťorm 

spaces. 

Theorem 3. Let � = @ 5r n h coz • Then Ot-:tine spa

ces are just the spaces in Theorems 1 and 2. 
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Proof'. As s ume t hat X is dl, -f'ine. If' f' 1s any unif'ormly 

cont inuous mapping int o a tr oduct K )( S w1 th X compact, and 

S metrie, then 

f': X� t
f'

(IC :,c. S) E $ 

which f'ollows f'rom Lemma J. Since X is :A,·-f'ine, the mapping 

1s unif'ormly continuous. 

Now assume that X has the properties in Theorems 1 and 
I 

2. Then each o -unif'ormly disorete h coz-cover is unif'orm1

and hence every Jt-mapping i nto a metrie space is· unif'ormly

continuous Ceven with the t opological f'ine uniformity on the
range).

Problem. Is coz_ = (D6r 
A coz)f' 

In conclusion we shall try to expresa hce, coz X · ae co

zero seta in some coreflection. To this end we define f'or each 

space X two spaces: x1 and x <l) as f'ollows: 

x
1 is projectively generated by all f': x1� t

f'
(S >'- IC) 

such that f: X� S,.. IC is uniformly continuous, and S is 

a complete metrie space. 

Similarly x <l) 1s projectively generated by all t: x<l�
� t

f'
(s >< K) such that f: X____,. S � K is uniformly · cont1 .. 

nuous, and S is D2etric (not necessarily complete). 

and 

By induction we def'ine 

x0 = x<o) = x ,

X�= ( 1 im { X ll I I� ..ca, l ) 
1

X(oc:,) = <11m-{X � J �-<-ae})Ci) .• 
� 
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Clearly \X� X cx; � , and -(X� X (,) J are concrete negati

ve functors of uniform spaces. 

Theorem 4. For each space X ,

coz X°" 
= coz X (oG)

= h°"coz X , 

all X °" and X (oe,) , ex> O , are ( complete-metric)-tf , and . 

x <ci:+i> � coz x <°"> 
= coz x QC, •

- -

In consequence , 

tion, 

lim X«, is the ( compact complete-metric)-tf coref'le c� 

�im x <�> is the Ccompact metric)-tf coreflection, 

and 

lim X (0v) - coz lim X�� -� 
• 

Proof. I. The first assertion follows from the oase 

0G = 1 by transfinite induction. Clearly 

coz x < 1 >::, coz x < 1 > ,
and from Lemma 2 we get 

coz X (l) c hl coz X • 

On the other band, if G is the union of a un iformly discrete 

family -(G
8 

J a e: Al in X , then we choose uniformly continu

ous mapping f' of X into a complete metrie space S such that 

,{f' [ G
8

1} is uniformly dia crete in S • Then we choose a uni

f'ormly discret e f'amily -i U
8
1 in S such that f' [G

8
)c U8 for

each a. 

tity), 

(j..) 

Consider the reduced product mapping ( o:t f' and the iden-

X-+S>C.X • 



- 65 -

v 
If 1H8} is a family of cozero seta in X such that H8 n

f\ X = G8 for each a , t he n e a cli G 8 is the inverse image un-

der ( *) of 

on V of all 

U8.:x H8 , and G is the inverse

U
8

x H
8 

• But V is a cozero set 

image of' the uni
.., 

in tf' (S )C, X) as 

a unif'ormly discrete union of cozero-sets in S,c.X.

II. All x00 and X (cc;) are Ccomplete �tric) -tf . Aga in

we check just the case oo = 1 • If S is a· metrie space, and 

if f: x <l) --#1- s Cor f: x1� S) is uni:f'ormly continuous, 

then there exists a uniformly cont inuous mapping g: X --,. T , 

T metrie ( com plete metrie, res p.) such that f is uni:f'ormly 

continuous with respect to the uniformity projectively genera

ted by the map 
. " 

X �tf(T >" X) ,

and hence f factorizes through this map with the range rest

I'icted to the image of X • Since S is complete, the :f'unctor 

unif"ormly continuously extends to the closure oť the imaga oť 

X, and since the closure is topological fine, the mapping re

mains continuous if the uniform strúcture of S is repiaced by 

tfs • Hence f: x
< 1 >---+ t fs C ·f: .x

1 ·� trs ) is unif"ormly

cont inuous. 

Remar k to II: Technically it may be easier to work wi th 

tť(g-1 [TJ)•

III. X (oG+l) � coz_ X (oc,) follows immediately from

the definition by transfinite induction, and coz.X°' 
=

= coz_ X (cc.) follo.vs by induction using the first assertion 

in the theorem. 
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rv. The remaining assertion follow �om the previous 

With every space there are associated the transfinite 

sequence .\:Xcl(.j of ( comple t e metric)-tf spaces, and the se

quence .( coz_ X (cc,) 
= coz_ X� 1 of metric-tf-spaces such that 

h oc, coz X = coz X 1.1., = coz( coz_X "'- ) • 

We know ( 3.4) that ( complete metric)-tf is just sub coz_ • 

Theorem 5. The space coz_Xoc., has . ft-uniformly dis;cre

te (in X) completely hac. coz(X)-additive covers for a basis 

for all uniform covers. 

Proof of Theorem 5. It is easy to show that every cover 

in question is a uniform cover oť coz_x oc- (by constructing a 

partition. On the other band, 

Corollary. -�im x <�) = � coz_X °" has 6 -uniformly dis

crete { in X or in itself) h coz X-covers for a basis of the 

uniform covers. 

Problem. 

= lim x< ·� ? 
� 

Is lim X °" the sutifunctor of lim coz X «:, 
=� ..._. -

4.3. h coz_ = coz_ o A = (h coz2)f

The result in the title seems to be quite non-trivial. 

At least our proof is long md prhaps tricky. It is based on 

the concept of a hyper-distal space, and by controlling the 

step-by-step construction of the coreflection into hyper-dis

tal spaces. 
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Definition. A uniform space X is called hyper-distal 

(the term 1s bad) if the following condition is satisfied: 

iť .\. Y8 ( a '=- A � is uniťormly discrete, 

ancl if f'or each a , "l X8b \ � Ba 1 is uniťormly discrete,

and Y
8

= U-tXab\ b �Bal for each a, then 

{Xab I < a, b ) e � -\Ba I a e A 1- i

is uniformly discrete. 

The main result is coded i n  the proof of the follow.ng 

Theerem 1 • Assume that X is hyper-distal. Then each 

hyper-cozero-set in X :,c. X containing the diagonal oť X 

contains a cozeroTset in X;,c. X containing the diagonal. 

The proof requires a more generel statement: 

�emma 1 • Under the assumpt ions on X in Theerem 1, for 

each G e h coz (X ,c.. X) there exists a cozero-set U in X><. X 

such that 

AxnGcUcG. 

Proof'. Fix X , and assume the statement is true for 

each G 6 h /')coz(X) � /3 < c,(, , o<..� 1 • We shall JrOVe that 

it holds for G c; h �coz(X) • By definition, G = U 'lGn \ n E'

c; G.>0 1- , and each Gn is a uniťormly dia cret e union oť sets 

of class strictly less than oe, • We may and shall assume

that G = Gn for each n , and that 

G = U{G
8

\ a �AJ

where -tG
8

:\ is a uniformly di screte f'amily of elemente af 

U -\.h f., c oz(X) I � < oc. 1 • By our assumption, we can take a

family of cozero-set& -i U
8 

\ s � A 1 in X� X such that
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for each a. We may and shall assume that 

ua c:. ( � x "' Ga) >< ( Llx" Gal 

f'or each a • Now the family of' alI 

u; =-\x f<x,x)E: U:
8

1

is a unif'ormly discrete �amily of cozero-sets in X. We have 

u c u' x u'a � � 
f'or each a � 

We can express each cozero-set U
8 

as a union 

� V a b ><. Wa b 1 b € U { B0 
( a) l l 

. such that each family 

� V 
8 b I b e Bn ( a) i 

is unitormly discrete. Put 

Hab =-\ X i <' X , x > <:.: vab >(. "ab 3 • 
Then the fami.ly 

{Hab \ b e: Bn(a)3 

is uniformly discrete in X for each n and a, and hence the 

f'amily -iHab \ b - U{Bn(a) \a'= A}} is uniformly discrete, 

hence 

G0 = U.\ H8b � H
8 

b \ a e A , b E Bn ( a) 1

is a cozero-set. Clearly 

G = U .f G n \ n - ec,0 l 
has the required properties. 

Propoai tion 1 •. If' X is hyper ... distal then 

h coz X =  coz X ,

and coz_X is locally fine. 
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Proof. A. Let G be the union of a uniformly discrete

family _..{G
8 

l a � A.} of cozero-sets in X • We want to show

that G is a cozero-set in X • First chaose a uniformly dia-

crete completely coz(X)-add1tive family 4U8} such tbat

Gac ua , and also a family -\fa 1_ of unif ormly continuous

f'uncti.ons such that Ga: = coz fa ' and f
8 

! O for each a ... 

Now given a positive real n consider the seta 

Since each pair G8n , Fan is uniformly discrete, necea

sarily the f'amily of al 1 Gan , and all Ua n F an is unif'orm

ly discrete, and hence the union of all G is distant ta thean 
union cf all U8 I'\ F an , and hence there: is a cozero-set 

which cont ains 

U -t G an \ a e A l

and is disjoint to

V-\U
8

t'\F
an

l 7 

and hence 

Since 

U -\Gan \ n e c.)0 1 = G , 

G is a cozero-set in X. 

G'n

B. Re call t hat coz_X hns all uniťor·rdy ó -di:➔ e:r:e t e

completey coz(X)-additive covers :for 3 basis all unjJ' orm 

covers. Because of the ťirst par•t oí ... the proof it is e.-:;-;.sy to 

che ck that these covers are st able under t aking t he Gins burg

Is bell-deriv at i,J e (31 which will be rccalled f'o1• the purpose 
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Proo:f. By Corollary to Theorem � we have 

eoz (x* «)) = coz ax
- -

f'or eacb X • Next by Theorem 2. , 

F =iX � coz_X -.cw, 1 

pre.serves tbe hyper-cozero-sets. It :follows tllat 

h eoz F U "- X) = h coz (X .,._ X) 

and hence 

h eoz (X)!( X) ::: 11 coz (FX .� PX} • 

Now i t ťDllows from Tbeorem JI that FX satis-N.e:s Statement B. 

Hence 

f': n---,, n

is uni:fornll.y co.ntínuous if and only if' 

f' � f': X"- X� Y. .1<. Y' E h coz (X )( X, Y X Y) • 

.The proof' is concluded by showing F = h coz� • Assume 

t.hat G is :an;y functor such that 

h coz (GX) = h eoz X ,  

and show tnat G is coarser than F .  By our assumption 

b coz G{X x X) = b coz (X� X) 

and hence 

h coz (GX >< GX) c h coz (X ,c. XJ • 

It f'ollows that GX bas a ba sis f'or uniform ,., icini t ies cons is

tinE cf' byper-cozero-sets in X� X ,  and by what we have al

ready proved, FX must be finer than G .  

Remark. We have proved that if G is any :ťunctor such 

that h coz GX c: h coz X for each X , then G is coarser than 

h coz_ • 


