Previous |  Up |  Next

Article

References:
[1] A. M. Bruckner, J. Haussermann: Strong porosity features of typical continuous functions. Acta Math. Hungar. 45 (1985), 7-13. DOI 10.1007/BF01955016 | MR 0779511 | Zbl 0592.26010
[2] A. M. Bruckner, B. S. Thomson: Porosity estimates for the Dini derivatives. Real Analysis Exchange 9 (1983-84), 508-538. MR 0766077
[3] K. M. Garg: On a residual set of continuous functions. Czechoslovak Math. J. 20 (95) (1970), 537-543. MR 0268334 | Zbl 0217.37204
[4] J. Haussermann: Porosity characterizations of intersection sets with the typical continuous function. Real Analysis Exchange 9 (1983-84), 386-389. MR 0766065
[5] P. D. Humke, M. Laczkovich: Typical continuous functions are virtually nonmonotone. Proc. Amer. Math. Soc. 94, (1985), 244-248. DOI 10.1090/S0002-9939-1985-0784172-7 | MR 0784172 | Zbl 0564.26002
[6] P. D. Humke, T. Vessey: Another note on $\sigma$-porous sets. Real Analysis Exchange 8 (1982-83), 261 - 271. MR 0694514
[7] V. Jarník: Über die Differenzierbarkeit stetiger Funktionen. Fund. Math. 21 (1933), 48-58.
[8] V. Jarník: Sur les nombres dérivés approximatifs. Fund. Math. 22 (1934), 4-16.
[9] B. S. Thomson: Some theorems for extreme derivates. J. London Math. Soc. (2), 27 (1983), 43-50. MR 0686501 | Zbl 0523.26004
[10] B. S. Thomson: Real Functions. Lect. Notes in Math. 1170, Springer-Verlag 1985. MR 0818744 | Zbl 0581.26001
[11] L. Zajíček: Sets of $\sigma$-porosity and sets of $\sigma$-porosity. (q), Časopis Pěst. Mat. 101 (1976), 350-359. MR 0457731
[12] L. Zajíček: On Dini derivatives of continuous and monotone functions. Real Analysis Exchange 7 (1981-82), 233-238. MR 0657321
Partner of
EuDML logo