Previous |  Up |  Next


mechanics of solids
In this paper a problem of thermal deflection in a solid circular plane in the axisymmetric case is solved (On the base of Forray-Newmann method). In this case, the temperature is found to be a function of co-ordinate $r$ and time parameter $t$.
[1] Carslaw H. S.., Jaeger J. C (1959): Conduction of heat in Solids. Oxford, Clarendon Press, P. 203. MR 0959730
[2] Forray M., Newmann M.: Axisymmetric Bending Stresses in Solid Circular Plates with Thermal Gradients. J. of Aero-sp. Sc. Vol. 27, No. 9, Sept. 1960, P. 717. DOI 10.2514/8.8722 | MR 0112422
[3] Forray M. J.: Thermal Stresses in Plates. J. of Aero. Sp. Sc. Vol. 25, No. 11, 1958, P. 716. MR 0103663
[4] Forray M., Zaid M.: Thermal Stresses in a Circular Bulkhead subjected to a radial Temperature Distribution. J. of Aero. SP. Sc., Vol. 25, No. 1, 1958, P. 63. MR 0103663
[5] Timoshenko S., Woinowsky-Krieger S.: Theory of Plates and Shells. Second Edition., McGraw-Hill., 1959.
[6] Gray S., Mathews G. B., Macrobert T. M.: A treatise on Bessel's Functions. MacMillan, 1952.
[7] Goldberg J. E.: Axisymmetric Flexural Temperature Stresses in Circular Plates. J. of App. Mech., June 1953, P. 257.
Partner of
EuDML logo