Previous |  Up |  Next


mechanics of solids
A weak (generalized) solution to the boundary-value problems in Cosserat continuum is defined. Its existence, uniqueness and continuous dependence upon the given data is proved for the statical loading of bounded, inhomogeneous and anisotropic bodies. Principles of minimum potential energy, of minimum complementary energy and some generalized variational principles are established.
[1] Nečas J.: Les méthodes directes en théorie des equations elliptiques. Academia, Prague 1967. MR 0227584
[2] Hlaváček I., Nečas J.: On inequalities of Korn's type. (to appear in Arch. Ratl. Mech. Anal. (1969)).
[3] Hlaváček I.: Derivation of non-classical variational principles in the theory of elasticity. Aplikace matematiky 12 (1967), 1, 15 - 29. MR 0214324
[4] Hlaváček I.: Variational principles in the linear theory of elasticity for general boundary conditions. Aplikace matematiky 12 (1967), 6, 425 - 448. MR 0231575
[5] Eringen A. C.: Linear theory of micropolar elasticity. Jour. Math. and Mech., 15 (1966), 6, 909-923. MR 0198744 | Zbl 0145.21302
[6] Палмов В. А.: Основные уравнения теории несимметричной упругости. Приклад, мат. мех., 28 (1964), 3, 401. Zbl 1117.65300
[7] Neuber H.: On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua. Applied Mechanics, Proceedings of the 11-th international congress of Appl. Mech., Munich, 1964.
Partner of
EuDML logo