Previous |  Up |  Next


mechanics of solids
In this paper the torsion problem of a composite beam of rectangular cross-section composed of $n$ different isotropic media with interfaces parallel to one side is solved adopting a procedure based on the use of Green's function for a composite body and Fourier sine transform. An example of a composite beam formed of three media is considered and dependence of the position of occurrence of maximum stress on the ration of rigidity moduli is observed.
[1] Kötter K.: S. B. Kgl. Preuss. Akad. Wiss. Math. Phys. Klasse, (1908), 935-955.
[2] Trefftz E.: Math. Annalen, (1921), 97-119.
[3] Seth B. R.: Proc. Camb. Phil. Soc., (1934), 139-140, 392-403.
[4] Arutyunyan N. H.: PMM (English translation), (1949), 13, 107-112. Zbl 0037.10702
[5] Abramian B. L., and Babloian A. A.: PMM (English translation), (1960), 24, 341 - 349.
[6] Deutsch E.: Proc. Glasgow Math. Assoc., (1962), 5, 176-182, Zbl 0173.26903
[7] Ince E. L.: Ordinary differential equations. (1962), 254-258.
[8] Morse P. M., Feshbach H.: Method of theoretical physics, part I. (1953), 799-800.
[9] Sokolnikoff I. S.: Mathematical theory of elasticity. (1956), 128-131. MR 0075755 | Zbl 0070.41104
Partner of
EuDML logo