Previous |  Up |  Next


The paper aims at a further development of the finite element method, when applied to mixed problems for parabolic equations. Much work has been done on a special Galerkin-type procedure of order $\tau^2$, which is similar to the Crank-Nicholson finite-difference scheme. Here a sequence of approximations is presented, possessing an increasing accuracy in the time increment $\tau$. The first approximation coincides with the above-mentioned procedure. For the second approximation, the rate of convergence $\tau^4$ and the stability with respect to the initial condition is proved. The efficiency of the first and second approximations are compared on a numerical example.
[1] J. Douglas, Jr. T. Dupont: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7(1970), 4, 575-626. MR 0277126
[2] I. Hlaváček: Variational formulation of the Cauchy problem for equations with operator coefficients. Aplikace matematiky 16 (1971), 1, 46-63. MR 0283652
[3] I. Hlaváček: Variational principles for parabolic equations. Aplikace matematiky 14 (1969), 4, 278-297. MR 0255988
[4] E. L. Wilson R. E. Nickell: Application of the finite element method to heat conduction analysis. Nucl. Eng. and Design 4 (1966), 276-286. DOI 10.1016/0029-5493(66)90051-3
[5] J. L. Lions: Equations differentielles operationelles et problèmes aux limites. Grundlehren Math. Wiss. Bd. 111, Springer 1961. MR 0153974
[6] G. Birkhoff M. H. Schultz R. S. Varga: Piecewise Hermite interpolation in one and two variables with application to partial differential equations. Numerische Math. 11 (1968), 232-256. DOI 10.1007/BF02161845 | MR 0226817
[7] А. А. Самарский: Некоторые вопросы общей теории разностных схем. Сб. ,,Дифференциалные уравнения с частными производными." Издат. Наука, Москва 1970.
[8] A. Ralston: A first course in numerical analysis. Mc Graw-Hill, 1965. MR 0191070 | Zbl 0139.31603
Partner of
EuDML logo