Previous |  Up |  Next


This paper is concerned with the mixed boundary-value problem, in the linear elasticity of multipolar bodies, using some results from the theory of linear elliptic partial differential equations. The $V$-ellipticity for the corresponding bilinear form of internal energy is derived and the existence, uniqueness and continuous dependence of the solution on the given data is established.
[1] A. E. Green R. S. Rivlin: Simple Force and Stress Multipoles. Arch. Rat. Mech. Anal., 16, p. 325 (1964). MR 0182191
[2] A. E. Green: Multipolar Continuum Mechanics. Arch. Rat. Mech. Anal., 17, p. 113 (1964). MR 0182192 | Zbl 0133.17604
[3] A. C. Eringen E. S. Suhubi: Nonlinear Theory of Simple Microelastic Solid. I and II, Int. J. Eng. Sci., 2, 189, 384 (1964). DOI 10.1016/0020-7225(64)90004-7 | MR 0169423
[4] R. D. Mindlin: Microstructure in Linear Elasticity. Arch. Rat. Mech. Anal., 16, p. 51 (1964). MR 0160356
[5] Cz. Wozniak: Thermoelasticity of Bodies with Microstructure. Archivum Mech. Stos., XIX, 3, p. 335 (1967).
[6] I. Hlaváček J. Nečas: On Inequalities of Korn's Type. I. Boundary-Value Problems for Elliptic Systems of Partial Differential Equations. Arch. Rat. Mech. Anal., 36, p. 305 (1970). MR 0252844
[7] I. Hlaváček J. Nečas: On Inequalities of Korn's Type. II. Applications to Linear Elasticity. Arch. Rat. Mech. Anal., 36, 312 (1970). DOI 10.1007/BF00249519 | MR 0252845
[8] I. Hlaváček M. Hlaváček: On the Existence and Uniqueness of Solution and Some Variational Principles in Linear Theories of Elasticity with Couple-Streses, II. Mindlin's Elasticity with Microstructure and the First Strain-Gradient Theory. Aplikace Matematiky, 14, p. 411 (1969).
[9] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
Partner of
EuDML logo