Article
Summary:
Let $A$ be a nonzero complex matrix $n \times n, x_0\in V_n(C), x_0\neq\Theta$. Let us define $x_k=A^kx_0$, $\mu_k=x^H_kx_k/x^H_{k-1}x_{k-1}$ and $v_k=x^H_{k-1}x_k/x^H_{k-1}x_{k-1}$. In this paper, assymptotic behaviour of the numbers $\mu_k$ and $v_k$ is studied in detail, mainly for matrices with nonlinear elementary divisors.
References:
                        
[1] A. S. Householder: 
The Theory of Matrices in Numerical Analysis. Blaisdell Publishing Company 1965. 
MR 0175290[3] R. S. Vargа: 
Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962. 
MR 0158502[4] V. Jarník: Differential Calculus II. (in Czech). Nakladatelství ČSAV, Praha 1956.
[5] I. Marek: 
Iterations of Linear Bounded Operators in Non Self-Adjoint Eigenvalue Problems and Kellogg's Iteration Process. Czech. Math. Journal, 12 (87), 536-554, Prague. 
Zbl 0192.23701[6] O. D. Kellogg: On the existence and closure of sets of characteristic functions. Math. Annalen, Band 86, Berlin 1922.
[7] F. Riesz B. Nagy: Lecons d'analyse fonctionelle. Budapest 1953.