Previous |  Up |  Next


error bounds; approximate solutions; parabolic equations; arbitrary curved domains; quadrature formulas; optimal order of convergence
In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in $n$-dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in $L_2$-norm of the method.
[1] P. G. Ciarlet, A. P. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In A. K. Aziz: The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press. New York and London. 1972. MR 0421108 | Zbl 0262.65070
[2] P. A. Raviart: The use of numerical integration in finite element methods for solving parabolic equations. Lecture presented at the Conference on Numerical Analysis. Royal Irish Academy. Dublin, August 14-18, 1972. MR 0345428
[3] Jindřich Nečas: Les Méthodes Directe en Théorie des Equations Elliptiques. Mason. Paris. 1967. MR 0227584
[4] V. J. Smirnov: Kurs vyššej matěmatiki. tom V. Gosudarstvěnnoje izdatělstvo fiziko-matěmatičeskoj litěratury. Moskva. 1960.
[5] Miloš Zlámal: Finite Element Multistep Discretizations of Parabolic Boundary Value Problems. Mathematics of Computation, 29, Nr 130 (1975), 350-359. DOI 10.1090/S0025-5718-1975-0371105-2 | MR 0371105
[6] Miloš Zlámal: Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., 10. No 1 (1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[7] Miloš Zlámal: Curved Elements in the Finite Element Methods II. SIAM J. Numer. Anal., 11. No 2 (1974), 347-362. DOI 10.1137/0711031 | MR 0343660
[8] Miloš Zlámal: Finite Element Methods for Parabolic Equations. Mathematics of Computation, 28, No 126 (1974), 393-404. DOI 10.1090/S0025-5718-1974-0388813-9 | MR 0388813
[9] T. Dupont G. Fairweather J. P. Johnson: Three-level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., 11, No 2 (1974). MR 0403259
[10] M. Lees: A priori estimates for the solutions of difference approximations to parabolic differential equations. Duke Math. J., 27 (1960), 287-311. DOI 10.1215/S0012-7094-60-02727-7 | MR 0121998
[11] Miloš Zlámal: Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Analyse numérique/Numerical Analysis, 11, No 1 (1977), 93-107. MR 0502073
[12] W. Liniger: A criterion for A-stability of linear multistep integration formulae. Computing, 3 (1968), 280-285. DOI 10.1007/BF02235394 | MR 0239763 | Zbl 0169.19902
Partner of
EuDML logo