Previous |  Up |  Next


piecewise linear elements; error estimate; exact solution sufficiently smooth; solution not regular; convergence
The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.
[1] J. Haslinger I. Hlaváček: Contact between elastic bodies. Part I. Continuous problems. Apl. Mat. 25 (1980), 324-348. MR 0590487
[2] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. MR 0298892
[3] M. Zlámal: Curved elements in the finite element method. SIAM J. Numer. Anal. 10, (1973), 229-240. DOI 10.1137/0710022 | MR 0395263
[4] G. Strang G. Fix: An analysis of the finite element method. Prentice-Hall, 1973. MR 0443377
[5] J. Nitsche: Über ein Variationsprinzip zur Lösung von Dirichlet-Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. DOI 10.1007/BF02995904 | MR 0341903
[6] I. Hlaváček J. Lovíšek: Finite element analysis of the Signorini problem in semi-coercive cases. Apl. Mat. 25 (1980), 274-285. MR 0583588
[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[8] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary. Apl. Mat. 22(1977), 180-187. MR 0440956 | Zbl 0434.65083
[9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory. Numer. Math. 28 (1977), 431 - 443. DOI 10.1007/BF01404345 | MR 0448949
Partner of
EuDML logo