Previous |  Up |  Next


elliptic variational inequalities; mixed formulation; saddle point problem
The approximation of a mixed formulation of elliptic variational inequalities is studied. Mixed formulation is defined as the problem of finding a saddle-point of a properly chosen Lagrangian $\Cal 2$ on a certain convex set $Kx \ \Lambda$. Sufficient conditions, guaranteeing the convergence of approximate solutions are studied. Abstract results are applied to concrete examples.
[1] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities, Part II: Mixed methods. Numerische Mathematik, 131, 1978, pp. 1-16. MR 0508584
[2] J. Cea: Optimisation, théorie et algorithmes. Dunod, 1971. MR 0298892 | Zbl 0211.17402
[3] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels. Dunod, 1974, Paris. MR 0463993
[4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numérique des inéquations variationnelles. Vol. I., II. Dunod, 1976, Paris.
[5] J. Haslinger I. Hlaváček: Approximation of the Signorini problem with friction by the mixed finite element method. to appear in JMAA.
[6] J. Haslinger J. Lovíšek: Mixed variational formulation of unilateral problems. CMUC 21, 2 (1980), 231-246. MR 0580680
[7] J. Haslinger M. Tvrdý: Numerical solution of the Signorini problem with friction by FEM. to appear. MR 1355659
Partner of
EuDML logo