Previous |  Up |  Next


research survey; parallel beam; divergent beam; ill-posed problem; convolution reconstruction methods; computer tomography; Radon’s inverse transform; regularization; generalized Fourier transform; spatial filter; window functions; errors
Computerized tomograhphy is a technique for computation and visualization of density (i.e. X- or $\gamma$-ray absorption coefficients) distribution over a cross-sectional anatomic plane from a set of projections. Three-dimensional reconstruction may be obtained by using a system of parallel planes. For the reconstruction of the transverse section it is necessary to choose an appropriate method taking into account the geometry of the data collection, the noise in projection data, the amount of data, the computer power available, the accuracy required etc. In the paper the theory related to the convolution reconstruction methods is reviewed. The principal contribution consists in the exact mathematical treatment of Radon's inverse transform based on the concepts of the regularization of a function and the generalized function. This approach naturally leads to the employment of the generalized Fourier transform. Reconstructions using simulated projection data are presented for both the parallel and divergent-ray collection geometries.
[1] R. N. Bracewell A. C. Riddle: Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150 (1967), 427-434. DOI 10.1086/149346
[2] T. F. Budinger G. T. Gullberg: Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans. Nucl. Sci. NS-21 (1974), 2-20. DOI 10.1109/TNS.1974.6499234
[3] D. De Rosier A. Klug: Reconstruction of three-dimensional structures from electron micrographs. Nature 217 (1968), 130-138. DOI 10.1038/217130a0
[4] I. M. Geľfand G. E. Šilov: Generalized functions and operations on them. (Russian.) Gos. izd. fiz.-mat. lit., Moskva 1959. MR 0097715
[5] G. T. Gullberg: The reconstruction of fan-beam data by filtering the back-projection. Comput. Graphics and Image Process. 10 (1979), 30-47. DOI 10.1016/0146-664X(79)90033-9
[6] S. Helgason: The Radon transform. Birkhäuser, Boston 1980. (Russian translation: Mir, Moskva 1983.) MR 0741182 | Zbl 0453.43011
[7] G. T. Herman A. V. Lakshminarayanan A. Naparstek: Convolution reconstruction techniques for divergent beams. Comput. Biol. Med. 6 (1976), 259 - 271. DOI 10.1016/0010-4825(76)90065-2
[8] В. K. Р. Horn: Fan-beam reconstruction methods. A. I. Memo No. 448, Massachusetts Institute of Technology, 1977.
[9] G. N. Hounsfield: Computerized transverse axial scanning (tomography). Part I: Description of system. British J. Radiol. 46 (1973), 1016-1022. DOI 10.1259/0007-1285-46-552-1016
[10] R. H. Huesman G. T. Gullberg W. L. Greenberg T. Budinger: Donner algorithms for reconstruction tomography. Tech. Rpt. Pub. 214, Lawrence Berkeley Laboratory, 1977.
[11] J. E. Husband I. K. Fry: Computed tomography of the body. Mac Millan Publishers 1981.
[12] V. Jarník: Integrální počet II. Nakladatelství ČSAV, Praha 1955.
[13] J. Jelínek T. R. Overton: Comparative study on reconstruction from projections: Correction functions. Proceedings Colloquium on Mathematical Morphology, Stereology and Image Analysis, ČSAV, Prague 1982, 113-116.
[14] P. M. Joseph R. D. Spital: The exponential edge-gradient effect in X-ray computed tomography. Phys. Med. Biol. 3 (1981), 473-487. DOI 10.1088/0031-9155/26/3/010
[15] P. M. Joseph R. D. Spital C. D. Stockham: The effects of sampling on CT images. Comput. Tomogr. 4 (1980), 189-206. DOI 10.1016/0363-8235(80)90023-X
[16] R. M. Lewitt: Ultra-fast convolution approximations for image reconstruction from parallel and fan beam projection data. Technical Report No. MIPG25, Medical Imaging Processing Group, Dept. of Computer Science, State University of New York at Buffalo, 1979.
[17] R. M. Lewitt R. H. T. Bates: Image reconstruction from projections II: Modified back-projection methods. Optik 50 (1978), 85-109.
[18] R. M. Mersereau: Direct Fourier transform techniques in 3-D image reconstruction. Comput. Biol. Med. 6 (1976), 247-258. DOI 10.1016/0010-4825(76)90064-0
[19] J. Radon: Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Manningfaltigkeiten. Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69 (1917), 262-277. MR 0692055
[20] G. N. Ramachandran A. V. Lakshminarayanan: Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms. Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2236-2240. DOI 10.1073/pnas.68.9.2236 | MR 0287750
[21] I. S. Reed Y. S. Kwoh T. K. Truong E. L. Hall: X-ray reconstruction by finite field transforms. IEEE Trans. Nucl. Sci. NS-24 (1977), 843-849. DOI 10.1109/TNS.1977.4328792
[22] P. Rüegsegger T. N. Hangartner H. U. Keller, et al.: Standardization of computed tomography images by means of material-selective beam hardening correction. J. Comput. Assist. Tomogr. 2 (1978), 184-188. DOI 10.1097/00004728-197804000-00012
[23] L. Schwartz: Théorie des distributions 1 & 2. Hermann, Paris 1950, 1951. MR 0209834
[24] L. A. Shepp R. F. Logan: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS-21 (1974), 21-43. DOI 10.1109/TNS.1974.6499235
[25] E. Tanaka: Generalized correction functions for convolutional techniques in three-dimensional image reconstruction. Phys. Med. Biol. 24 (1979), 157-161. DOI 10.1088/0031-9155/24/1/013
[26] K. Yosida: Functional analysis. Springer-Verlag, Berlin 1965. Zbl 0126.11504
Partner of
EuDML logo