Previous |  Up |  Next


Clebsch-Gordan coefficients; weight approximating; Jacobi polynomials; orthogonal polynomials; curve fitting
The author studies a system of polynomials orthogonal at a finite set of points its weight approximating that of the orthogonal system of classical Jacobi polynomials.
[1] N. Y. Vilenkin: Special Functions and Representation Theory of Groups. Nauka, Moscow 1965. (In Russian; English translation: Amer. Math. Soc., Providence 1968.)
[2] A. S. Holevo: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam 1982. MR 0681693 | Zbl 0497.46053
[3] H. Bateman A. Erdélyi: Higher Transcendental Functions. Vol. 2. McGraw-Hill. New York 1953. MR 0058756
[4] M. Weber A. Erdélyi: On the finite difference analogue of Rodrigues' formula. Amer. Math. Monthly, Washington, 59 (1952), 163-168. DOI 10.2307/2308188 | MR 0054094
[5] Radhakrishna C. Rao: Linear Statistical Inference and Its Applications. J. Wiley, New York 1973. MR 0346957
[6] A. Ralston: A First Course in Numerical Analysis. McGraw-Нill, New York 1965. Zbl 0139.31603
[7] B. P. Demidovich I. A. Maron E. Z. Shuvalova: Numerical Methods of Analysis. Approximation of Functions, Differential and Integral Equations. Nauka, Moscow 1967 (in Russian).
Partner of
EuDML logo