Previous |  Up |  Next


accelerated convergence methods; smoothing operators; time-periodic solutions; quasilinear beam equation; Newton method; Galerkin method
The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.
[1] L. Hörmander: On the Nash-Moser implicit function theorem. Annal. Acad. Sci. Fennicae, Ser. A, 10 (1985) pp. 255-259. MR 0802486
[2] S. Klainerman: Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33 (1980), pp. 43-101. DOI 10.1002/cpa.3160330104 | MR 0544044 | Zbl 0405.35056
[3] P. Krejčí: Hard implicit function theorem and small periodic solutions to partial differential equations. Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536. MR 0775567
[4] A. Matsumura: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation. Publ. Res. Inst. Math. Soc. 13 (1977), pp. 349-379. DOI 10.2977/prims/1195189813 | MR 0470507 | Zbl 0371.35030
[5] J. Moser: A rapidly-convergent iteration method and non-linear differential equations. Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265-315, 499-535. Zbl 0174.47801
[6] H. Petzeltová: Application of Moser's method to a certain type of evolution equations. Czechoslovak Math. J. 33 (1983), pp. 427-434. MR 0718925 | Zbl 0547.35081
[7] H. Petzeltová M. Štědrý: Time-periodic solutions of telegraph equations in n spatial variables. Časopis pěst. mat. 109 (1984), pp. 60-73. MR 0741209
[8] M. Štědrý: Periodic solutions of nonlinear equations of a beam with damping. Czech. Thesis, Math. Inst. Czechoslovak Acad. Sci., Prague 1973.
[9] O. Vejvoda, al.: Partial differential equations - time periodic solutions. Sijthoff Noordhoff 1981.
Partner of
EuDML logo