MSC:
49A27,
49A29,
49A34,
49J27,
49J40,
49J99,
73k40,
74G30,
74H25,
74K15,
74P99 | MR 0982340 | Zbl 0678.73059

Full entry |
PDF
(1.7 MB)
Feedback

optimal control problem; elliptic, linear symmetric operator; unique solution of stationary variational inequalities; convex set; principle of virtual power; unilateral constraints; bending; cylindrical shell; thickness function; obstacle

References:

[1] R. A. Adams: **Sobolev Spaces**. Academic Press, New York, San Francisco, London 1975, MR 0450957 | Zbl 0314.46030

[2] H. Attouch: **Convergence des solution d'inéquations variationnelles avec obstacle**. Proceedings of the International Meeting on Recent Methods in Nonlinear analysis. (Rome, May 1978) ed. by E. De Giorgi - E. Magenes - U. Mosco.

[3] V. Barbu: **Optimal control of variational inequalities**. Pitman Advanced Publishing Program, Boston. London, Melbourne 1984. MR 0742624 | Zbl 0574.49005

[4] I. Boccardo C. Dolcetta: **Stabilita delle soluzioni di disequazioni variazionali ellittiche e paraboliche quasi-lineari**. Ann. Universeta Ferrara, 24 (1978), 99-111.

[5] J. Céa: **Optimisation, Théorie et Algorithmes**. Dunod Paris, 1971. MR 0298892

[6] G. Duvaut J. L. Lions: **Inequalities in mechanics and physics**. Berlin, Springer Verlag 1975. MR 0521262

[7] R. Glowinski: **Numerical Methods for Nonlinear Variational Problems**. Springer Verlag 1984. MR 0737005 | Zbl 0536.65054

[8] I. Hlaváček I. Bock J. Lovíšek: **Optimal Control of a Variational Inequality with Applications to Structural Analysis**. II. Local Optimization of the Stress in a Beam. III. Optimal Design of an Elastic Plate. Appl. Math. Optimization 13: 117-136/1985. DOI 10.1007/BF01442202 | MR 0794174

[9] D. Kinderlehrer G. Stampacchia: **An introduction to variational inequalities and their applications**. Academic Press, 1980. MR 0567696

[10] V. G. Litvinov: **Optimal control of elliptic boundary value problems with applications to mechanics**. Moskva "Nauka" 1987, (in Russian).

[11] M. Bernadou J. M. Boisserie: **The finite element method in thin shell. Theory: Application to arch Dam simulations**. Birkhäuser Boston 1982. MR 0663553

[12] J. Nečas I. Hlaváček: **Mathematical theory of elastic and elasto-plastic bodies: An introduction**. Elsevier Scientific Publishing Company, Amsterdam 1981. MR 0600655

[13] U. Mosco: **Convergence of convex sets of solutions of variational inequalities**. Advances of Math. 3 (1969), 510-585. DOI 10.1016/0001-8708(69)90009-7 | MR 0298508

[14] K. Ohtake J. T. Oden N. Kikuchi: **Analysis of certain unilateral problems in von Karman plate theory by a penalty method - PART 1. A variational principle with penalty**. Computer Methods in Applied Mechanics and Engineering 24 (1980), 117-213, North Holland Publishing Company.

[15] P. D. Panagiotopoulos: **Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy functions**. Birkhäuser-Verlag, Boston-Basel-Stutgart, 1985. MR 0896909 | Zbl 0579.73014