Previous |  Up |  Next


finite elements; elliptic problems; dual analysis; axisymmetric problem; dual variational formulation; second order elliptic problem; error analysis; weighted Sobolev spaces; unilateral and obstacle problems
A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.
[1] I. Hlaváček: Dual finite element analysis for some elliptic variational equations and inequalities. Acta Appl. Math. 1 (1983), 121-150. DOI 10.1007/BF00046832 | MR 0713475
[2] I. Hlaváček: Some equilibrium and mixed models in the finite element method. Banach Center Publications, 3 (1977), 147-165. MR 0514379
[3] J.-P. Aubin H. Burchard: Some aspects of the method of hypercircle applied to elliptic variational problems. Proceed. of SYNSPADE, 1971, Academic Press, 1 - 67. MR 0285136
[4] B. Mercier G. Raugel: Resolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis. R.A.I.R.O. Anal, numer. 16, (1982), 405-461. MR 0684832
[5] I. Hlaváček: Domain optimization in axisymmetric elliptic boundary value problems by finite elements. Apl. Mat. 33 (1988), 213 - 244. MR 0944785
[6] I. Doležel: Numerical calculation of the leakage field in the window of a transformer with magnetic shielding. Acta Technica ČSAV, (1981), 563-588.
[7] V. Girault P. A. Raviart: Finite element methods for Navier-Stokes equations. Springer- Verlag, Berlin 1986. MR 0851383
[8] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems. Numer. Meth. in Part. Dif. Eqs. (To appear.)
Partner of
EuDML logo