Previous |  Up |  Next


nondense point set; boundary; hull; stabilized matrix; decomposition
The paper deals with the decomposition and with the boundarz and hull construction of the so-called nondense point set. This problem and its applications have been frequently studied in computational geometry, raster graphics and, in particular, in the image processing (see e.g. [3], [6], [7], [8], [9], [10]). We solve a problem of the point set decomposition by means of certain relations in graph theory.
[1] J. Zámožík V. Zaťková: Testing of Convex Polyhedron Visibility by means of graphs. Aplikace matematiky 25 (1980), 81-85. MR 0560324
[2] M. Mišút M. Mišútová: Reduced Boolean Matrices Multiplication Algorithms. submitted to Appl. of Math..
[3] V. Medek: On the Boundary of a Finite Set of Points in the Plane. CGIP 15 (1981), 93-99.
[4] J. Bosák: Graphs and Their Applications. Bratislava, Alfa, 1980. (In Slovak.)
[5] J. Zámožík: Reduced Boolean Matrix. Zborník ved. prác StF SVŠT, ES Bratislava, 1980, pp. 9-11. (In Slovak.)
[6] S. G. Akl G. T. Toussaint: Efficient Convex Hull Algorithms for Pattern Recognition Applications. Proc. 4th Int. Joint. Conf. on Pattern Recognition, Kyoto 1978, pp. 1-5. MR 0563485
[7] R. Miller Q. F. Stout: Mesh Computer Algorithms for Computational Geometry. IEEE 38 (1989), no. 3, 321-340. MR 0983711
[8] H. Edelsbrunner D. G. Kirkpatrick R. Seidel: On the Shape of Set of Points in the Plane. Forschungszentrum Graz, 1981, pp. 1-27.
[9] T. Pavlidis: The Use of a Syntactic Shape Analyser for Contour Matching. IEEE Trans. Pattern Analysis Machine Intelligence PAMI-I (1979), 307-310. DOI 10.1109/TPAMI.1979.4766928
[10] G. T. Toussaint: Pattern Recognition and Geometrical Complexity. Proc. 5th Int. Conf. Patt. Rec., Miami Beach, 1980, pp. 1324-1347. MR 0521237
[11] V. P. Preparata M. I. Shamos: Computational Geometry. Springer-Verlag, Berlin, 1985. DOI 10.1007/978-1-4612-1098-6 | MR 0805539
Partner of
EuDML logo