Previous |  Up |  Next


nonlinear inverse problems; parameter choice strategy; nonlinear ill- posed problems; Hilbert spaces; Tikhonov regularization; convergence rate; numerical examples
We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given.
[1] H. W. Engl H. Gfrerer: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems. Appl. Num. Math. 4 (1988), 395-417. DOI 10.1016/0168-9274(88)90017-7 | MR 0948506
[2] H. W. Engl K. Kunisch A. Neubauer: Convergence rates for Tikhonov regularization of nonlinears ill-posed problems. Inverse Problems 5 (1989), 523-540. MR 1009037
[3] H. Gfrerer: An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Mathematics of Computation 49 (1987), 507-522. DOI 10.1090/S0025-5718-1987-0906185-4 | MR 0906185 | Zbl 0631.65057
[4] C. W. Groetsch: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984. MR 0742928 | Zbl 0545.65034
[5] A. Neubauer: Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems 5 (1989), 541-557. MR 1009038
[6] O. Scherzer H. W. Engl K. Kunisch: Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. on Numer. Anal., to appear. MR 1249043
[7] T. L Seidman C. R. Vogel: Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems. Inverse Problems 5 (1989), 227-238. MR 0991919
Partner of
EuDML logo