Previous |  Up |  Next


natural operator; tensor field; complete lift; vertical lift
We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$.
[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$. CRAS Paris 309 (1989), 1509–1514. MR 1033091
[2] de León, M., Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland Mathematics Studies 158, Amsterdam, 1989. MR 1021489
[3] Janyška, J.: Natural $2$–forms on the tangent bundle of a Riemannian manifold. to appear in Proc. of Winter School in Srní, Suppl. Rend. Circ. Matem. Palermo.
[4] Kolář, I.: Natural transformations of the second tangent functor into itself. Arch. Math. (Brno) XX (1984), 169–172. MR 0784868
[5] Kolář, I., Radziszewski, Z.: Natural transformations of second tangent and cotangent functors. Czech. Math. J. 38(113) (1988), 274–279. MR 0946296
[6] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[7] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Differential Geometry and Its Applications, Proceedings, D. Reidel Publishing Company (1987), 149–178. MR 0923348
[8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces. Quaderni dell’ Instituto di Matematica dell’ Università di Lecce Q. 16 (1978).
[9] Morimoto, A.: Liftings of tensor fields and connections to tangent bundle of higher order. Nagoya Math. J. 40 (1970), 99–120. MR 0279719
[10] Morimoto, A.: Liftings of some types of tensor fields and connections to tangent bundles of $p^r$–velocities. Nagoya Math. J. 40 (1970), 13–31. MR 0279720
[11] Tulczyjev, W.M.: Hamiltonian systems, Lagrangian systems and the Legendre transformation. Symp. Math. 14, 247–258, Roma 1974.
[12] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker Inc., New York, 1973. MR 0350650
Partner of
EuDML logo