Previous |  Up |  Next


vector field; natural bundle; natural operator; Weil bundle
We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.
[1] Cantrijn, F., Crampin, M., Sarlet, W. and Saunders, D.: The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$. C. R. Acad. Sci. Paris 309 (1989), 1509-1514. MR 1033091
[2] Kobak, P.: Natural liftings of vector fields to tangent bundles of $1$-forms. Mathematica Bohemica 116 (1991), 319-326. MR 1126453
[3] Kolář, I.: Covariant Approach to Natural Transformations of Weil Bundles. Comment. Math. Univ. Carolinae (1986). MR 0874666
[4] Kolář, I.: On Cotagent Bundles of Some Natural Bundles. to appear in Rendiconti del Circolo Matematico di Palermo. MR 1344006
[5] Kolář, I.: On the Natural Operators on Vector Fields. Ann. Global Anal. Geometry 6 (1988), 109-117. MR 0982760
[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer – Verlag, 1993. MR 1202431
[7] Kolář, I., Radziszewski, Z.: Natural Transformations of Second Tangent and Cotangent Bundles. Czechoslovak Math. (1988), 274-279. MR 0946296
[8] Modugno, M., Stefani, G.: Some results on second tangent and cotangent spaces. Quaderni dell’Università di Lecce (1978).
Partner of
EuDML logo