[1] Andronow A. A., Witt A. A., Chaikin S. E.: Theorie der Schwingungen I. Akademie Verlag, Berlin, 1965 
[2] Bliman P. A., Krasnosel’skii A. M.: 
Periodic solutions of linear systems coupled with relay. Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 687–696  
MR 1487651 | 
Zbl 0888.34036[3] Butenin N. V., Nejmark Y. I., Fufaev N. A.: 
An Introduction to the Theory of Nonlinear Oscillations. Nauka, Moscow, 1987, (in Russian)  
MR 0929029[4] Chicone C.: 
Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators. J. Differential Equations, 112 (1994), 407–447  
MR 1293477[6] Deimling K.: 
Multivalued differential equations and dry friction problems. in Proc. Conf. Differential and Delay Equations, Ames, Iowa 1991 (A. M. Fink, R. K. Miller, W. Kliemann, eds.), World Scientific, Singapore 1992, 99–106  
MR 1170147[7] Deimling K., Szilágyi P.: 
Periodic solutions of dry friction problems. Z. angew. Math. Phys. (ZAMP), 45 (1994), 53–60  
MR 1259526[8] Deimling K., Hetzer G., Shen W.: 
Almost periodicity enforced by Coulomb friction. Adv. Differential Equations, 1 (1996), 265–281  
MR 1364004 | 
Zbl 0838.34016[9] den Hartog J. P.: 
Mechanische Schwingungen. 2nd ed., Springer-Verlag, Berlin, 1952  
Zbl 0046.17201[10] Fečkan M.: 
Bifurcation of periodic solutions in differential inclusions. Appl. Math., 42 (1997), 369–393  
MR 1467555 | 
Zbl 0903.34036[11] Fečkan M.: 
Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions. Proc. Royal Soc. Edinburgh, 127A (1997), 727–753  
MR 1465417 | 
Zbl 0990.34038[12] Fečkan M.: 
Chaotic solutions in differential inclusions: Chaos in dry friction problems. Trans. Amer. Math. Soc. (to appear)  
MR 1473440 | 
Zbl 0921.34016[13] Fečkan M.: 
Bifurcation from homoclinic to periodic solutions in ordinary differential equations with multivalued perturbations. J. Differential Equations, 130 (1996), 415-450  
MR 1410897[14] Fečkan M.: 
Chaos in ordinary differential equations with multivalued perturbations: applications to dry friction problems. Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 1355–1364  
MR 1490058 | 
Zbl 0894.34010[15] Fečkan M.: 
Periodic solutions in systems at resonances with small relay hysteresis. Math. Slovaca (to appear)  
MR 1804472 | 
Zbl 1047.34011[16] Fečkan M., Gruendler J.: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with singular perturbations. preprint 
[17] Gruendler J.: 
Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations. J. Differential Equations, 122 (1996), 1–26  
MR 1356127[18] Guckenheimer J., Holmes P.: 
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983  
MR 0709768 | 
Zbl 0515.34001[20] Kunze M.: 
On Lyapunov exponents for non-smooth dynamical systems with an application to a pendulum with dry friction. preprint, 1997  
MR 1758290[21] Kunze M., Michaeli B.: On the rigorous applicability of Oseledet’s ergodic theorem to obtain Lyapunov exponents for non-smooth dynamical systems. submitted to the Proc. 2nd. Marrakesh Inter. Conf. Differential Eq., Ed. A. Vanderbauwhede, 1995 
[22] Kunze M., Küpper T.: 
Qualitative bifurcation analysis of a non-smooth friction-oscillator model. Z. angew. Math. Phys. (ZAMP), 48 (1997), 87–101  
MR 1439737 | 
Zbl 0898.70013[23] Kunze M., Küpper T., You J.: 
On the application of KAM theory to non-smooth dynamical systems. Differential Equations, 139 (1997), 1–21  
MR 1467350[24] Macki J. W., Nistri P., Zecca P.: 
Mathematical models for hysteresis. SIAM Review, 35 (1993), 94–123  
MR 1207799 | 
Zbl 0771.34018[25] Macki J. W., Nistri P., Zecca P.: 
Periodic oscillations in systems with hysteresis. Rocky Mountain J. Math. 22 (1992), 669–681  
MR 1180729 | 
Zbl 0759.34013[26] Popp K.: Some model problems showing stick-slip motion and chaos. ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos (R. A. Ibrahim and A. Soom, eds.) DE–49 (1992), 1–12 
[27] Popp K., Hinrichs N., Oestreich M.: 
Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sādhanā 20, 2–4 (1995), 627–654  
MR 1375904 | 
Zbl 1048.70503[28] Popp K., Stelter P.: 
Stick-slip vibrations and chaos. Philos. Trans. R. Soc. London A 332 (1990), 89–105  
Zbl 0709.70019[29] Reissig R.: 
Erzwungene Schwingungen mit zäher Dämpfung und starker Gleitreibung. II. Math. Nachr. 12 (1954), 119–128  
MR 0069996[30] Reissig R.: 
Über die Stabilität gedämpfter erzwungener Bewegungen mit linearer Rückstellkraft. Math. Nachr. 13 (1955), 231–245  
MR 0078535 | 
Zbl 0066.33503[31] Rumpel R. J.: Singularly perturbed relay control systems. preprint, 1996 
[32] Rumpel R. J.: 
On the qualitative behaviour of nonlinear oscillators with dry friction. ZAMM 76 (1996), 665–666   
Zbl 0900.34041