Previous |  Up |  Next


Boundary layers; correctors; nonlinear reaction diffusion equations; chaffee-infante equation
This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.
[1] S. N. Alekseenko: Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls. Siberian Math. J. 35, 2 (1994), 209–229 MR 1288259 | Zbl 0856.35099
[2] R. Balian, J. L. Peube, ed.: Fluid dynamics. Cours de l’École d’Été de Physique Théorique, Les Houches, Gordon and Breach Science Publishers, New-York (1977) MR 0495783 | Zbl 0348.00025
[3] O. V. Besov V. P. Il’in, S. M. Nikol’skii: Integral representations of functions and imbedding theorems. Vol I, English translation edited by M.H. Taibleson, J. Wiley, New York (1978) MR 0519341
[4] W. Eckhaus: Asymptotic Analysis of Singular Perturbations. North-Holland (1979) MR 0553107 | Zbl 0421.34057
[5] P. Germain: Méthodes Asymptotiques en Mécanique des Fluides. in [2] Zbl 0387.76001
[6] O. A. Ladyzhenskaya: The mathematical theory of viscous incompressible flows. $2^{\text{nd}}$ ed., Gordon and Breach, New York (1969) MR 0254401
[7] P. Lagerström: Matched Asymptotics Expansion, Ideas and Techniques. Springer-Verlag, New York (1988) MR 0958913
[8] J. L. Lions: Perturbations singulières dans les problèmes aux limites et en controle optimal. Lecture Notes in Math 323, Springer-Verlag, New York (1973) MR 0600331 | Zbl 0268.49001
[9] H. K. Moffatt: Six lectures on general fluid dynamics and two on hydromagnetic dynamo theory. in [2] Zbl 0367.76001
[10] O. Oleinik: The Prandtl system of equations in boundary layer theory. Dokl. Akad. Nauk SSSR 150 4(3) (1963), 583–586 MR 0153979
[11] N. C. Owen J. Rubinstein, P. Sternberg: Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. R. Soc. Lond. A 429 (1990), 505–532 MR 1057968
[12] J. Rubinstein, P. Sternberg: On the slow motion of vortices in the Ginzburg-Landau heat flow. SIAM J. Math. Anal. 26 (1995), no 6, 1452–1466 MR 1356453 | Zbl 0838.35102
[13] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics. $2^{\text{nd}}$ edition, Springer-Verlag, New York, Berlin (1997) MR 1441312 | Zbl 0871.35001
[14] R. Temam, X. Wang: Asymptotic analysis of Oseen Type Equations in a Channel at Small Viscosity. IU Math. J. 45 (1996), no.3, 863–916 MR 1422110 | Zbl 0881.35097
[15] R. Temam, X. Wang: On the behavior of the Navier-Stokes equations at vanishing viscosity. volume dedicated to the memory of E. De Giorgi, Annali della Scuola Normale Superiore di Pisa (to appear)
[16] R. Temam, X. Wang: Boundary Layers for Oseen’s Type Equation in Space Dimension Three. Russian Journal of Mathematical Physics 5 (1997), no. 2, 227–246 MR 1491635 | Zbl 0912.35125
[17] M. I. Vishik, L. A. Lyusternik: Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekki Mat. Nauk 12 (1957), 3–122 MR 0096041 | Zbl 0087.29602
Partner of
EuDML logo