Previous |  Up |  Next


bundle functors; natural transformations; natural operators
For integers $r\ge 2$ and $n\ge 2$ a complete classification of all natural operators $A:T_{\vert M_n}\rightsquigarrow T(J^rT^*)^*$ lifting vector fields to vector fields on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
[1] Doupovec, M.: Natural operations transforming vector fields to the second order tangent bundle. Čas. pěst. mat. 115(1990), 64–72. MR 1044015
[2] Gancarzewicz, J.: Lifting of functions and vector fields to natural bundles. Dissert. Math. CCXII, Warszawa, 1983. MR 0697471
[3] Kolář, I.: On natural operators on vector fields. Ann. Global Analysis and Geometry, 6(2) (1988), 109–117. MR 0982760
[4] Kolář, I.: On the natural operators transforming vector fields to the $r$-th tensor power. Suppl. Rendiconti Circolo Mat. Palermo, 32 (II) (1993), 15–20. MR 1283617
[5] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. MR 1202431
[6] Kobak, P.: Natural liftings of vector fields to tangent bundles of bundles of 1-forms. Math. Boch. 116 (1991), 319–326. MR 1126453 | Zbl 0743.53008
[7] Mikulski, W. M.: Some natural operations on vector fields. Rendiconti Math. Roma 12(VII) (1992), 783–803. MR 1205977 | Zbl 0766.58005
[8] Mikulski, W. M.: Some natural constructions on vector fields and higher order cotangent bundles. Mh. Math. 117 (1994), 107–119. MR 1266777 | Zbl 0796.58002
[9] Tomáš, J.: Natural operators on vector fields on the cotangent bundles of the bundles of (k,r)-velocities. Rend. Circ. Mat. Palermo 5431(II) (1998), 113–124 239–249. MR 1662732 | Zbl 0929.58001
Partner of
EuDML logo