Previous |  Up |  Next

Article

Keywords:
space-like hypersurface; stablity; scalar curvature; de Sitter space
Summary:
In this paper, we study the stability of space-like hypersurfaces with constant scalar curvature immersed in the de Sitter spaces.
References:
[1] Alencar H., do Carmo M., Colares A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. MR 1217674 | Zbl 0792.53057
[2] Akutagawa K.: On space-like hypersurfaces with constant mean curvature in the de Sitter space. Math. Z. 196 (1987), 13–19. MR 0907404
[3] Barbosa J. L., do Carmo M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (1984), 339–353. MR 0731682 | Zbl 0513.53002
[4] Barbosa J. L., do Carmo M., Eschenburg J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 123–138. MR 0917854
[5] Barbosa J. L., Oliker V.: Stable spacelike hypersurfaces with constant mean curvature in Lorentz space. Geometry and Global Analysis, Tohoku University, Sendai (1993), 161–164. MR 1361178 | Zbl 0974.53513
[6] Cheng Q. M.: Complete space-like submanifolds in a de Sitter space with parallel mean curvature vector. Math. Z. 206 (1991), 333–339. MR 1095758 | Zbl 0695.53042
[7] Cheng S. Y., Yau S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. MR 0431043 | Zbl 0349.53041
[8] Ramanathan J.: Complete space-like hypersurfaces of constant mean curvature in the de Sitter space. Indiana Univ. Math. J. 36 (1987), 349–359. MR 0891779
[9] Reilly R. C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geom. 8 (1973), 465–477. MR 0341351 | Zbl 0277.53030
Partner of
EuDML logo