Previous |  Up |  Next

Article

Summary:
These are the lecture notes from the 26th Winter School “Geometry and Physics", Czech Republic, Srní, January 14 – 21, 2006. These lectures are an introduction into the realm of generalized geometry based on the tangent plus the cotangent bundle. In particular we discuss the relation of this geometry to physics, namely to two-dimensional field theories. We explain in detail the relation between generalized complex geometry and supersymmetry. We briefly review the generalized Kähler and generalized Calabi-Yau manifolds and explain their appearance in physics.
References:
[1] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. MR 2151966
[2] Bonechi F., Zabzine M.: work in progress. Zbl 1201.81097
[3] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. Lett. Math. Phys. 77 (2006), 291–308, arXiv:hep-th/0603130. MR 2260375 | Zbl 1105.53053
[4] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. Lett. Math. Phys. 77 (2006), 53–62, arXiv:hep-th/0511179. MR 2247462 | Zbl 1105.53063
[5] A. Cannas da Silva A., Weinstein A.: Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, AMS, Providence, 1999.
[6] Courant T., Weinstein A.: Beyond Poisson structures. In Action hamiltoniennes de groups. Troisième théorème de Lie (Lyon 1986), volume 27 of Travaux en Cours, 39–49, Hermann, Paris, 1988. MR 0951168
[7] Courant T.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631–661. MR 0998124 | Zbl 0850.70212
[8] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248 (1984), 157. MR 0776369
[9] Graña M.: Flux compactifications in string theory: A comprehensive review. Phys. Rept. 423 (2006), 91 [arXiv:hep-th/0509003]. MR 2193814
[10] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, arXiv: math.DG/0401221. Zbl 1235.32020
[11] Hitchin N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54 3 (2003), 281–308 [arXiv:math.DG/0209099]. MR 2013140 | Zbl 1076.32019
[12] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (2006), 131–164, arXiv:math.DG/0503432. MR 2217300 | Zbl 1110.53056
[13] Hitchin N.: Brackets, forms and invariant functionals. arXiv:math.DG/0508618. MR 2253158 | Zbl 1113.53030
[14] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. MR 2322555 | Zbl 1192.81310
[15] Li Y.: On deformations of generalized complex structures: The generalized Calabi-Yau case. arXiv:hep-th/0508030.
[16] Lindström U.: A brief review of supersymmetric non-linear sigma models and generalized complex geometry. arXiv:hep-th/0603240. MR 2322417 | Zbl 1164.53400
[17] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257 (2005), 235 [arXiv:hep-th/0405085]. MR 2163575 | Zbl 1118.53048
[18] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. Comm. Math. Phys. 269 (2007), 833–849, arXiv:hep-th/0512164. MR 2276362 | Zbl 1114.81077
[19] Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differential Geom. 45 3 (1997), 547–574. MR 1472888 | Zbl 0885.58030
[20] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548 (2002), 243 [arXiv:hep-th/0210043]. MR 1948542 | Zbl 0999.81044
[21] Mackenzie K. C. H.: General theory of Lie groupoids and Lie algebroids. Cambridge University Press, Cambridge, 2005. xxxviii+501 pp. MR 2157566 | Zbl 1078.58011
[22] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. MR 2322532 | Zbl 1154.81024
[23] Roytenberg D.: Courant algebroids, derived brackets and even symplectic supermanifolds. (PhD thesis), arXiv:math.DG/9910078. MR 2699145
[24] Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171. MR 0321133 | Zbl 0274.58002
[25] Yano K., Kon M.: Structures of manifolds. Series in Pure Mathematics, Vol.3 World Scientific, Singapore, 1984 Yano, K., Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965. MR 0794310
[26] Zabzine M.: Hamiltonian perspective on generalized complex structure. Comm. Math. Phys. 263 (2006), 711 [arXiv:hep-th/0502137]. MR 2211820 | Zbl 1104.53077
Partner of
EuDML logo