[1] Alekseev A., Strobl T.:
Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183].
MR 2151966
[3] Bredthauer A., Lindström U., Persson J., Zabzine M.:
Generalized Kaehler geometry from supersymmetric sigma models. Lett. Math. Phys. 77 (2006), 291–308, arXiv:hep-th/0603130.
MR 2260375 |
Zbl 1105.53053
[4] Calvo I.:
Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. Lett. Math. Phys. 77 (2006), 53–62, arXiv:hep-th/0511179.
MR 2247462 |
Zbl 1105.53063
[5] A. Cannas da Silva A., Weinstein A.: Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, AMS, Providence, 1999.
[6] Courant T., Weinstein A.:
Beyond Poisson structures. In Action hamiltoniennes de groups. Troisième théorème de Lie (Lyon 1986), volume 27 of Travaux en Cours, 39–49, Hermann, Paris, 1988.
MR 0951168
[8] Gates S. J., Hull C. M., Roček M.:
Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248 (1984), 157.
MR 0776369
[9] Graña M.:
Flux compactifications in string theory: A comprehensive review. Phys. Rept. 423 (2006), 91 [arXiv:hep-th/0509003].
MR 2193814
[10] Gualtieri M.:
Generalized complex geometry. Oxford University DPhil thesis, arXiv: math.DG/0401221.
Zbl 1235.32020
[11] Hitchin N.:
Generalized Calabi-Yau manifolds. Q. J. Math. 54 3 (2003), 281–308 [arXiv:math.DG/0209099].
MR 2013140 |
Zbl 1076.32019
[12] Hitchin N.:
Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (2006), 131–164, arXiv:math.DG/0503432.
MR 2217300 |
Zbl 1110.53056
[14] Kapustin A., Li Y.:
Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249.
MR 2322555 |
Zbl 1192.81310
[15] Li Y.: On deformations of generalized complex structures: The generalized Calabi-Yau case. arXiv:hep-th/0508030.
[16] Lindström U.:
A brief review of supersymmetric non-linear sigma models and generalized complex geometry. arXiv:hep-th/0603240.
MR 2322417 |
Zbl 1164.53400
[17] Lindström U., Minasian R., Tomasiello A., Zabzine M.:
Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257 (2005), 235 [arXiv:hep-th/0405085].
MR 2163575 |
Zbl 1118.53048
[18] Lindström U., Roček M., von Unge R., Zabzine M.:
Generalized Kaehler manifolds and off-shell supersymmetry. Comm. Math. Phys. 269 (2007), 833–849, arXiv:hep-th/0512164.
MR 2276362 |
Zbl 1114.81077
[19] Liu Z.-J., Weinstein A., Xu P.:
Manin triples for Lie bialgebroids. J. Differential Geom. 45 3 (1997), 547–574.
MR 1472888 |
Zbl 0885.58030
[20] Lyakhovich S., Zabzine M.:
Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548 (2002), 243 [arXiv:hep-th/0210043].
MR 1948542 |
Zbl 0999.81044
[21] Mackenzie K. C. H.:
General theory of Lie groupoids and Lie algebroids. Cambridge University Press, Cambridge, 2005. xxxviii+501 pp.
MR 2157566 |
Zbl 1078.58011
[23] Roytenberg D.:
Courant algebroids, derived brackets and even symplectic supermanifolds. (PhD thesis), arXiv:math.DG/9910078.
MR 2699145
[24] Sussmann H.:
Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171.
MR 0321133 |
Zbl 0274.58002
[25] Yano K., Kon M.:
Structures of manifolds. Series in Pure Mathematics, Vol.3 World Scientific, Singapore, 1984 Yano, K., Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965.
MR 0794310
[26] Zabzine M.:
Hamiltonian perspective on generalized complex structure. Comm. Math. Phys. 263 (2006), 711 [arXiv:hep-th/0502137].
MR 2211820 |
Zbl 1104.53077