[1] Baldoni W.: 
General represenation theory of real reductive Lie groups. In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72.  
MR 1476492[2] Britten D. J., Hooper J., Lemire F. W.: 
Simple $C_n$-modules with multiplicities 1 and application. Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335.  
MR 1297597[3] Green M. B., Hull C. M.: 
Covariant quantum mechanics of the superstring. Phys. Lett. B, 225 (1989), 57–65.  
MR 1006387[4] Howe R.: 
$\theta $-correspondence and invariance theory. Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285.  
MR 0546602[5] Habermann K.: 
The Dirac operator on symplectic spinors. Ann. Global Anal. Geom. 13 (1995), 155–168.  
MR 1336211 | 
Zbl 0842.58042[6] Habermann K., Habermann L.: 
Introduction to symplectic Dirac operators. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006.  
MR 2252919 | 
Zbl 1102.53032[7] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry. Ph.D. thesis, Charles University of Prague, Prague, 2001. 
[8] Kashiwara M., Schmid W.: 
Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups. In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488.  
MR 1327544[9] Kashiwara M., Vergne M.: 
On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49.  
MR 0463359[10] Kostant B.: 
Symplectic Spinors. Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152.  
MR 0400304 | 
Zbl 0321.58015[11] Krýsl S.: 
Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$. J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72.  
MR 2286881[12] Krýsl S.: 
Symplectic spinor valued forms and operators acting between them. Arch. Math.(Brno) 42 (2006), 279–290.  
MR 2322414[13] Krýsl S.: 
Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries. to appear in J. Differential Geom. Appl.  
MR 2458281[14] Reuter M.: 
Symplectic Dirac-Kähler Fields. J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085.  
MR 1722329 | 
Zbl 0968.81037[15] Rudnick S.: Symplektische Dirac-Operatoren auf symmetrischen Räumen. Diploma Thesis, University of Greifswald, Greifswald, 2005. 
[16] Schmid W.: 
Boundary value problems for group invariant differential equations. Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322.  
MR 0837206 | 
Zbl 0621.22014[17] Severa V.: Invariant differential operators on spinor-valued differential forms. Ph.D. thesis, Charles University of Prague, Prague, 1998. 
[18] Sommen F., Souček V.: 
Monogenic differential forms. Complex Variables Theory Appl. 19 (1992), 81–90.  
MR 1228331 | 
Zbl 0765.30032[19] Tirao J., Vogan D. A., Wolf J. A.: 
Geometry and Representation Theory of Real and $p$-Adic Groups. Birkhäuser, 1997.  
MR 1486131[21] Weil A.: 
Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211.  
MR 0165033[22] Woodhouse N. M. J.: 
Geometric quantization. 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997.   
MR 1183739 | 
Zbl 0907.58026