Previous |  Up |  Next


$(s,r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
[1] Cabras, A., Janyška, J., Kolář, I.: On the geometry of variational calculus on some functional bundles. Note Mat. 26 (2) (2006), 51–57. MR 2298069 | Zbl 1195.58007
[2] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag Berlin, 1993. MR 1202431
[3] Mikulski, W. M.: The jet prolongations of fibered manifolds and the flow operator. Publ. Math. Debrecen 59 (2001), 441–458. MR 1874443
[4] Mikulski, W. M.: The natural operators lifting projectable vector fields to some fiber product preserving bundles. Ann. Polon. Math. 81 (3) (2003), 261–271. DOI 10.4064/ap81-3-4 | MR 2044627 | Zbl 1099.58003
Partner of
EuDML logo