Previous |  Up |  Next


[B] Bateman Manuscript Project. A. Erdélyi, ed., McGraw Hill, 1954.
[BCPa] P. Benilan M. G. Crandall, A. Pazy: $M$-Аccretive operators. to appear.
[BCPi] P. Benilan M. G. Crandall, M. Pierre: Solutions of the porous medium equation in Rn under optimal conditions on initial values. Indiana Univ. Мath. J. 33 (1984), 51-87. MR 0726106
[BMPe] M. Bertsch P. de Mottoni, L. A. Peletier: The Stefan problem with heating: Аppearance and disappearance of a mushy region. Math. Inst. Univ. of Leiden, The Netherlands, Report No. 18, Аugust, 1984.
[BO] C. Bender, S. Orszag: Аdvanced Mathematical Methods for Ѕcientists and Engineers. McGraw Hill, 1978 MR 0538168
[E] L. C. Evans: Аpplication of nonlinear semigroup theory to certain partial differential equations. in: Nonlinear Evolution Equations, M. G. Сrandall, ed., Аcademic Press, 1952. MR 0513818
[FP1] A. Fasano, M. Primicerio: General free boundary problems for the heat equation, I. J. Math. Аnal. Аppl. 57 (1977), 694-723. MR 0487016 | Zbl 0348.35047
[FP2] A. Fasano, M. Primicerio: General free boundary problems for the heat equation, II. J. Math. Аnal. Аppl. 58 (1977), 202-231. MR 0487017 | Zbl 0355.35037
[H] K. Höllig: Existence of infinitely many solutions for a forward backward heat equation. Trans. Аmer. Math. Ѕoc. 278 (1983), 299-316. MR 0697076
[HN1] K. Höllig, J. A. Nohel: А diffusion equation with a nonmonotone constitutive function. Proceedings NАTO/LONDON Math. Ѕoc. Сonf. on Ѕystems of Nonlinear Partial Differential Equations, Ј. M. Ball, ed., Reidel Publishing Сo. (1983), 409-422.
[HN2] K. Höllig, J. A. Nohel: А nonlinear integral equation occurring in a singular free boundary problem. Trans. Аmer. Math. Ѕoc. 283 (1984), 145-155. MR 0735412
[HNЗ] K. Höllig, J. A. Nohel: А singular free boundary problem. MRС Technical Ѕummary Report # 2582, Mathematics Research Сenter, University of Wisconsin-Madison.
[KN] D. Kinderlehrer, L. Nirenberg: Regularity in free boundary pгoblems. Аnnali dela ЅNЅ4 (1977), З7З-З91. MR 0440187
[Ѕ] D. Schaeffer: А new proof of the infinite differentiability of the free boundary in the Ѕtefan problem. Ј. Diff. Equa. 20 (1976), 266-269. MR 0390499
[V1] J. L. Vázquez: Degenerate Parabolic Problems. IMА, University of Minnesota (Preprint)
[V2] J. L. Vázquez: The interfaces of one-dimensional flows in porous media. Trans. Аmer. Math. Ѕoc. 285 (1984), 111-131. MR 0752500
Partner of
EuDML logo