Previous |  Up |  Next


pseudo $MV$-algebra; direct product decomposition
In this paper we deal with the relations between the direct product decompositions of a pseudo $MV$-algebra and the direct product decomposicitons of its underlying lattice.
[1] Chajda, I., Halaš, R. and Rachůnek, J.: Ideals and congruences in generalized $MV$-algebras. Demonstratio Math. (to appear). MR 1769414
[2] Cignoli, R., D’Ottaviano, M. I. and Mundici, D.: Algebraic Foundations of many-valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7. Kluwer Academic Publishers, Dordrecht, 2000. DOI 10.1007/978-94-015-9480-6 | MR 1786097
[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht-Boston-London and Ister Science, Bratislava, 2000. MR 1861369
[4] Dvurečenskij, A.: Pseudo $MV$-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. (to appear).
[5] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6–9 May, Romania, 1999, pp. 961–968. MR 1730100
[6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95–135. MR 1817439
[7] Hashimoto, J.: On direct product decompositions of partially ordered sets. Annals of Math. 54 (1951), 315–318. DOI 10.2307/1969532 | MR 0043067
[8] Jakubík, J.: Direct products of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[9] Jakubík, J.: Convex chains in a pseudo $MV$-algebra. Czechoslovak Math. J. (to appear). MR 1962003
[10] Leustean, I.: Local pseudo $MV$-algebras. (submitted). Zbl 0992.06011
[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. (to appear). MR 1905434
[12] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras. (submitted).
Partner of
EuDML logo