Previous |  Up |  Next


forcing; unbounded family
We shall investigate some properties of forcing which are preserved by finite support iterations and which ensure that unbounded families in given partially ordered sets remain unbounded.
[1] Bartoszyński T.: Additivity of measure implies additivity of category. Trans. Amer. Math. Soc.209-213 (1984),281, 1. MR 0719666
[2] Bukovský L.: $\nabla$-models and distributivity in Boolean algebras. Comment. Math. Univ. Carol.595-612 (1968),9, 4. MR 0262129
[3] Bukovský L., Recław I., Repický M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions. Topology Appl.\toappear.
[4] Cichoń J., Pawlikowski J.: On ideals of subsets of the plane and on Cohen real. J. Symb. Logic 560-569 (1986),51, 3. MR 0853839
[5] Fremlin D. H.: Cichoń's diagram. Publ. Math. Univ. Pierre Marie Curie 66 Semin. Initiation Anal. 23eme Anee-1983/84 Exp. No. 5, 13p.(1984). Zbl 0559.03029
[6] Ihoda J., Shelah S.: The Lebesgue measure and the Baire property: Laver's reals, preservation theorem for forcing, completing a chart of Kunen-Miller. preprint.
[7] Jech T.: Set Theory. Academic Press, 1978. MR 0506523 | Zbl 1007.03002
[8] Kamburelis A.: Iterations of Boolean algebras with measure. Arch. Math. Logic21-28 (1989),29. MR 1022984 | Zbl 0687.03032
[9] Krawczyk A.: $B(m)+A(c)\nrightarrow A(m)$. preprint.
[10] Miller A. W.: Some properties of measure and category. Trans. Amer. Math. Soc.93-114 (1981), 266. MR 0613787 | Zbl 0472.03040
[11] Raisonier J., Stern J.: The strength of measurability hypothesis. Israel J. Math.337-349 (1985),50, 4. MR 0800191
[12] Repický M.: Porous sets and additivity of Lebesgue measure. Real Analysis Exchange, 1989-1990. MR 1042544
[13] Truss J.K.: Sets having caliber $\aleph_1$. Proc. Logic Colloquium `76, Studies in Logic 595-612 (1977),87. MR 0476513
Partner of
EuDML logo