Previous |  Up |  Next


alternative set theory; set-definable; homology theory; simplex; complex; Sd-IS of groups
Homology functor in the spirit of the AST is defined, its basic properties are studied. Eilenberg-Steenrod axioms for this functor are formulated and established.
[A] Alexandrov P.S.: Combinatorial Topology. Moskva (1947),(in Russian).
[C] Cord M.C.: Non-standard analysis and homology. Fund. Math. 74 (1972), 21-28. MR 0300270
[E-S] Eilenberg S., Steenrod N.: Foundations of Algebraic Topology. Princeton Press (1952). MR 0050886 | Zbl 0047.41402
[G] Garavaglia S.: Homology with equationally compact coefficients. Fund. Math. 100 (1978), 89-95. MR 0494066 | Zbl 0377.55006
[G1] Guričan J.: Homology theory in the alternative set theory I. Algebraic preliminaries. Comment. Math. Univ. Carolinae 32 (1991), 75-93. MR 1118291
[G-Z] Guričan J., Zlatoš P.: Archimedean and geodetical biequivalences. Comment. Math. Univ. Carolinae 26 (1985), 675-698. MR 0831804
[H-W] Hilton P.J., Wylie S.: Homology Theory. Cambridge University Press Cambridge (1960). MR 0115161 | Zbl 0091.36306
[S-V] Sochor A., Vopěnka P.: Endomorphic universes and their standard extensions. Comment. Math. Univ. Carolinae 20 (1979), 605-629. MR 0555178
[V1] Vopěnka P.: Mathematics in the Alternative Set Theory. Teubner-Texte Leipzig (1979). MR 0581368
[V2] Vopěnka P.: Mathematics in the Alternative Set Theory. (in Slovak) ALFA Bratislava (1989).
[W] Wattenberg F.: Non-standard analysis and the theory of shape. Fund. Math. 98 (1978), 41-60. MR 0528354
[Ž1] Živaljevič R.T.: Infinitesimals, microsimplexes and elementary homology theory. AMM 93 (1986), 540-544. MR 0856293
[Ž2] Živaljevič R.T.: On a cohomology theory based on hyperfinite sums of microsimplexes. Pacific J. Math. (1987), 128 201-208. MR 0883385
Partner of
EuDML logo