Previous |  Up |  Next


compressible flows; existence of steady solutions; exterior domains
We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density $\varrho $, moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.
Beirâo da Veiga H.: Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow. Rend. Sem. Mat. Univ. Padova 79 247-273. MR 0964034
Finn R.: On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems. Arch. Ratl. Mech. Anal. 19 363-406. MR 0182816 | Zbl 0149.44606
Friedrichs K.O.: Symmetric positive linear differential equations. Comm. Pur. Appl. Math. 11 333-418. MR 0100718 | Zbl 0083.31802
Fujita Yashima H.: Sur l'équation de Navier-Stokes compressible stationaire. VII Congresso do Grupo ne Matematicos de Expressâo Latina, Actas vol. II, Coimbra.
Galdi G.P.: On the Oseen boundary-value problem in exterior domains. Proc. of ``The Navier-Stokes Equations Theory and Numerical Methods'', J.G. Heywood, K. Masuda, R. Rautmann, V.A. Solonnikov eds., Oberwolfach. Zbl 0783.35047
Galdi G.P.: On the energy equation and on the uniqueness for $D$-solutions to steady Navier-Stokes equations in exterior domains. Mathematical Problems related to the Navier- Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci., 34-78. MR 1190729 | Zbl 0791.35099
Galdi G.P.: On the asymptotic structure of $D$-solutions to steady Navier-Stokes equations in exterior domains. Mathematical Problems related to the Navier-Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci. MR 1190730 | Zbl 0794.35111
Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. vol. I Linearized Stationary Problems, Springer Tracts in Natural Philosophy. MR 1284205 | Zbl 0949.35005
Matsumura A.: Fundamental solution of the linearized system for the exterior stationary problem of compressible viscous flow. Pattern and Waves, Studies in Math. and its Appl. 18 481-505. MR 0882390 | Zbl 0637.76064
Matsumura A., Nishida T.: Exterior stationary problems of motion of compressible viscous and heat-conductive fluids. Proc. EQUADIFF, Dafermos & Ladas & Papanicolau eds., M. Dekker Inc., 473-479. MR 1021749
Novotný A., Padula M. (forthcoming): $L^p$-approach to steady flows of viscous compressible fluids in exterior domains.
Padula M.: Stability properties of heat-conducting compressible regular flows. J. Math. Kyoto Univ. 32 178-222. MR 1173972
Padula M.: A representation formula for steady solutions of a compressible fluid moving at low speed. Transport Theory and Statistical Physics 21 (1992), 593-614. MR 1194463
Padula M., Pileckas C. (forthcoming): Steady flows of a viscous ideal gas in domains with noncompact boundaries: I. Existence and asymptotic behavior in a pipe.
Simader C.G.: The weak Dirichlet and Neumann problem for the laplacian in $L^q$ for bounded and exterior domains. Applications, Nonlinear Analysis, Function Spaces and Applications 4, M. Krbec, A. Kufner, B. Opic, J. Rákosník eds., 180-250. MR 1151436
Partner of
EuDML logo