Previous |  Up |  Next


spin structure; Dirac operator; induced Dirac operator on submanifolds
In this paper some relation among the Dirac operator on a Riemannian spin-manifold $N$, its projection on some embedded hypersurface $M$ and the Dirac operator on $M$ with respect to the induced (called standard) spin structure are given.
[1] Baston R., Eastwood M.: The Penrose Transform: its interaction with representation theory. Oxford Univ. Press, Oxford, 1989. MR 1038279 | Zbl 0726.58004
[2] Baum H.: Spin-Strukturen und Dirac-Operatoren über pseudo-riemannschen Mannigfaltigheiten. Leipzig, 1981.
[3] Baum H., Friedrich Th., Grunewald R., Kath I.: Twistor and Killing spinors on Riemannian manifolds. Seminarbericht Nr.108, Berlin, Juli 1990. MR 1084369 | Zbl 0705.53004
[4] Brackx F., Delanghe R., Sommen F.: Clifford analysis. Research Notes in Math., 76, Pitman, 1982. MR 0697564 | Zbl 1058.30043
[5] Delanghe R., Sommen F., Souček V.: Clifford Algebra and Spinor-Valued Functions. Math. and Its Applications, Kluwer, 1992. MR 1169463
[6] Bureš J.: The Dirac operator, Mimeographed lecture notes MÚKU, 1991.
[7] Helgason S.: Analysis on Lie groups and homogeneous spaces. Reg. conf. series in Math. 14 (1972), American Math. Society. MR 0316632 | Zbl 0264.22010
[8] Sommen F.: Monogenic functions on surfaces. Journal Reine Angew. Math. 361 (1985), 145-181. MR 0807257 | Zbl 0557.30042
[9] Lawson B., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton, 1989. MR 1031992 | Zbl 0688.57001
Partner of
EuDML logo