Previous |  Up |  Next


sheaves on a complete Boolean algebra; injective Boolean algebra; complete Boolean algebra; injective complete Boolean algebra; absolute frame retract
The functor taking global elements of Boolean algebras in the topos $\text{$\bold{Sh}\frak B$}$ of sheaves on a complete Boolean algebra $\frak B$ is shown to preserve and reflect injectivity as well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter Theorem in $\frak B$-valued set theory and to prove that (i) the category of complete Boolean algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category of frames has no absolute retracts.
[1] Banaschewski B.: On pushing out frames. Comment. Math. Univ. Carolinae 31 (1990), 13-21. MR 1056165 | Zbl 0706.18003
[2] Banaschewski B., Bhutani K.R.: Boolean algebras in a localic topos. Math. Proc. Cambridge Phil. Soc. 100 (1986), 43-55. MR 0838652 | Zbl 0598.18001
[3] Bell J.L.: On the strength of the Sikorski Extension Theorem for Boolean algebras. J. Symb. Logic 48 (1983), 841-846. MR 0716646 | Zbl 0537.03032
[4] Blass A., Sčedrov A.: Freyd's models for the independence of the axiom of choice. Mem. Amer. Math. Soc. 79 (1989), No. 404. Zbl 0687.03031
[5] Higgs D.: A category approach to Boolean-valued set theory. preprint, University of Waterloo, 1973.
[6] Johnstone P.T.: Topos theory. L.M.S. Mathematical Monographs no. 10, Academic Press, 1977. MR 0470019 | Zbl 1071.18002
[7] Johnstone P.T.: Conditions related to De Morgan's law. Springer LNM 253 (1979), 479-491. MR 0555556 | Zbl 0445.03041
[8] Johnstone P.T.: Stone spaces. Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[9] Mac Lane S.: Categories for the Working Mathematician. Graduate Texts in Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York, 1971. MR 0354798 | Zbl 0906.18001
[10] Pultr A.: Oral communication, October 1986.
Partner of
EuDML logo