Previous |  Up |  Next


biframe compactification; strong inclusion
Compactifications of biframes are defined, and characterized internally by means of strong inclusions. The existing description of the compact, zero-dimensional coreflection of a biframe is used to characterize {\sl all\/} zero-dimensional compactifications, and a criterion identifying them by their strong inclusions is given. In contrast to the above, two sufficient conditions and several examples show that the existence of smallest biframe compactifications differs significantly from the corresponding frame question.
[1] Banaschewski B.: Compact regular frames and the Sikorski theorem. Kyungpook Math. J. 28 (1988), 1-14. MR 0986848 | Zbl 0676.03029
[2] Banaschewski B.: Universal zero-dimensional compactifications. Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics (Prague, 1988), 257-269, World Sci. Publishing, Teaneck, NJ, 1989. MR 1047906
[3] Banaschewski B.: Compactification of frames. Math. Nachr. 149 (1990), 105-116. MR 1124796 | Zbl 0722.54018
[4] Banaschewski B.: Biframe compactifications. manuscript, 1989.
[5] Banaschewski B., Brümmer G.C.L.: Stably continuous frames. Math. Proc. Cambr. Phil. Soc. 104 (1988), 7-19. MR 0938448
[6] Banaschewski B., Brümmer G.C.L., Hardie K.A.: Biframes and bispaces. Quaestiones Math. 6 (1983), 13-25. MR 0700237
[7] Bourbaki N.: General Topology. Addison Wesley Publishing Company, Reading, Massachussetts, 1966. Zbl 1107.54001
[8] Johnstone P.T.: Stone Spaces. Cambridge Univ. Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[9] Schauerte A.: Biframes. Ph.D. Thesis, McMaster University, 1992.
Partner of
EuDML logo