Article
Keywords:
$k$-space; $k$-network; closed map; compact-covering map
Summary:
We prove some closed mapping theorems on $k$-spaces with point-countable $k$-networks. One of them generalizes La\v snev's theorem. We also construct an example of a Hausdorff space $Ur$ with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a $k$-space $X$ with a point-countable $k$-network admitting a closed surjection which is not compact-covering contains a closed copy of $Ur$.
References:
                        
[A] Arkhagel'skii A.: 
Factor mappings of metric spaces (in Russian). Dokl. Akad. Nauk SSSR 155 (1964), 247-250. 
MR 0163284[GMT] Gruenhage G., Michael E., Tanaka Y.: 
Spaces determined by point-countable covers. Pacif. J. Math. 113 (1984), 303-332. 
MR 0749538 | 
Zbl 0561.54016[H] Hoshina T.: 
On the quotient $s$-images of metric spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10 (1970), 265-268. 
MR 0275358 | 
Zbl 0214.49503[L] Lašnev N.: 
Continuous decompositions and closed mappings of metric spaces. Sov. Math. Dokl. 6 (1965), 1504-1506. 
MR 0192478[M] Michael E.: 
$\aleph_0$-spaces. J. Math. Mech. 15 (1966), 983-1002. 
MR 0206907[Miš] Miščenko A.: 
Spaces with pointwise denumerable basis (in Russian). Dokl. Akad. Nauk SSSR 145 (1962), 985-988 Soviet Math. Dokl. 3 (1962), 855-858. 
MR 0138090[T] Tanaka Y.: 
Point-countable covers and $k$-networks. Topology Proceedings 12 (1987), 327-349. 
MR 0991759 | 
Zbl 0676.54035[V1] Velichko N.: 
Ultrasequential spaces (in Russian). Mat. Zametki 45 (1989), 15-21. 
MR 1002513[V2] Velichko N.: 
On continuous mappings of topological spaces (in Russian). Sibirsky Mat. Zhurnal 8 (1972), 541-557. 
MR 0301691