Previous |  Up |  Next


circular convolution property
We consider a commutative ring $\operatorname R$ with identity and a positive integer $\operatorname N$. We characterize all the 3-tuples $(\operatorname L_1,\operatorname L_2,\operatorname L_3)$ of linear transforms over $\operatorname R^{\operatorname N}$, having the ``circular convolution'' pro\-perty, i.e\. such that $x\ast y=\operatorname L_3(\operatorname L_1 (x)\otimes \operatorname L_2 (y))$ for all $x,y \in \operatorname R^{\operatorname N}$.
[1] Cikánek P.: SCC matice nad komutativnim okruhem. PhD-Thesis, Section 5, pp. 63-81, Brno, 1992.
[2] Hasse H.: Number Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0562104 | Zbl 0991.11001
[3] Skula L.: Linear transforms and convolution. Math. Slovaca 37:1 (1987), 9-30. MR 0899012 | Zbl 0622.65143
[4] Skula L.: Linear transforms supporting circular convolution on residue class rings. Math. Slovaca 39:4 (1989), 377-390. MR 1094761 | Zbl 0778.11073
[5] Nussbaumer H.T.: Fast Fourier transform and convolution algorithms. Springer-Verlag, Berlin-Heidelberg-New York, 1981. MR 0606376 | Zbl 0599.65098
[6] Zarisky O., Samuel P.: Commutative Algebra. Vol. 1, 1958, D. van Nostrand, Inc., Princeton, New Jersey, London.
Partner of
EuDML logo